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Variational Quantum Algorithms are hybrid classical-quantum algorithms where classical and quantum com-

putationwork in tandem to solve computational problems. These algorithms create interesting challenges for

the design of suitable programming languages. In this paper we introduce Qimaera, which is a set of libraries

for the Idris 2 programming language that enable the programmer to implement (variational) quantum algo-

rithms where the full power of the elegant Idris language works in synchrony with quantum programming

primitives that we introduce. The two key ingredients of Idris that make this possible are (1) dependent types

which allow us to implement unitary (i.e. reversible and controllable) quantum operations; and (2) linear-

ity which allows us to enforce fine-grained control over the execution of quantum operations that ensures

compliance with the laws of quantum mechanics. We demonstrate that Qimaera is suitable for variational

quantum programming by providing implementations of the two most prominent variational quantum algo-

rithms – QAOA and VQE. To the best of our knowledge, this is the first implementation of these algorithms

that has been achieved in a type-safe framework.

Additional Key Words and Phrases: variational quantum programming, dependent types, linear types

1 INTRODUCTION

Variational Quantum Algorithms [8, 15, 20] are becoming increasingly important for quantum com-

putation. The main idea behind this computational paradigm is to use hybrid classical-quantum

algorithms that work in tandem to solve computational problems. The classical part of the algo-

rithm is performed by a classical processor and the quantum part of the algorithm is executed on a

quantum device. During the computation process, intermediary results produced by the quantum

device are passed onto the classical device which performs further computation on them that is

used to tune the parameters of the quantum part of the algorithm, which therefore has an effect

on the quantum dynamics. The hybrid classical-quantum back and forth process repeats until a

desired termination condition is satisfied.

This hybrid classical-quantum computational paradigm opens up interesting and important

challenges for the design of suitable programming languages. It is clear that if we wish to pro-

gram within such computational scenarios, we need to develop a language that correctly models

the manipulation of quantum resources. In particular, quantum measurements give rise to proba-

bilistic computational effects that are inherited by the classical side of the language. Another issue

is that quantum information behaves very differently compared to classical information. As an ex-

ample, quantum information cannot be copied in a uniform way [28], unlike classical information,

which may be freely copied without restriction. Therefore, if we wish to avoid runtime errors, the

quantum fragment of the language needs to be equipped with features for fine-grained control,

such as for example, having a substructural typing discipline [3–5, 10, 14] where contraction (i.e.

copying) is restricted. On the other hand, when doing classical computation, such restrictions are

unnecessary and often inconvenient. One solution to this problem is to design a language with a

classical (non-linear) fragment together with a quantum (linear) one, both of which interact nicely

with each other. In fact, this can be achieved within an existing language that has a sufficiently

advanced type system, as we show in this paper.
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Our Contributions. In this paper, we describe Qimaera (named after the hybrid creature Chimaera

from Greek mythology), which is a set of libraries for the Idris 2 language [7] that allow the pro-

grammer to implement (variational) quantum algorithms in a type-safe way. Idris 2 is an elegant

functional programming language that is equipped with an advanced type system based on Quan-

titative Type Theory [3, 14] that brings many useful features to the programmer, most notably de-

pendent types and linearity. These two features of Idris are crucial for the development of Qimaera

and, in fact, are the reason we chose Idris in the first place. Dependent types are used throughout

our entire development in order to correctly represent and formalise the compositional nature of

quantum operations. Linearity is used in order to enforce the proper consumption of quantum

resources (during execution) in a way that is admissible with respect to the laws of quantum me-

chanics. The combination of dependent types and linearity allows us to statically detect and reject

erroneous quantum programs and this ensures the type safety of our approach to variational quan-

tum programming.

In our intended computational scenario, we have access to both a classical computer and a quan-

tum computer. Since we cannot directly observe quantum information, we directly interact with

the classical computer which sends instructions to, and receives data from, the quantum device

via a suitable interface that makes use of the IO monad. In our view, this is an adequate represen-

tation of a realistic computational environment for variational quantum programming. We design

a suitable (abstract) interface that allows us to model this situation accurately and which makes

use of the IO monad. However, since the authors do not personally have any quantum hardware,

we provide only one concrete implementation of our interface that simulates the relevant quan-

tum operations on our classical computers by using the proper linear-algebraic formalism, but

while still using the IO monad as prescribed by the abstract interface. From a high-level program-

ming perspective, both the abstract interface and its concrete implementation (via linear-algebraic

simulation) address all of the programming challenges induced by the classical-quantum device

computational scenario.

We emphasise that we can achieve type-safe (variational) quantum programming in an exist-

ing programming language by implementing suitable libraries. This is important for variational

quantum programming, because in most variational quantum algorithms, the classical part of the

algorithm is considerably larger, more complicated and more difficult to implement, compared to

the quantum part of the algorithm. Therefore, it is important for the programming language to

have first-class support for classical programming features. Our chosen language, Idris, is defi-

nitely such a language. The advanced type system of Idris allows us to elegantly mix quantum

and classical programming primitives and therefore allows us to get the best of both worlds. We

demonstrate that Qimaera is suitable for variational quantum programming by providing imple-

mentations of the two most prominent variational quantum algorithms – QAOA and VQE. To the

best of our knowledge, this is the first implementation of these algorithms that has been achieved

in a type-safe framework. In particular, this means that common quantum programming errors (e.g.

copying of qubits, applying a CNOT operation with the same source and target, etc.) are statically

detected and rejected by the Idris type checker.

Overview and summary of contributions. We begin by providing some background on quantum

computation (§2.1) and the Idris programming language (§2.2). We then explain how we represent

unitary (i.e. reversible and controllable) quantum operations in Idris and we provide some impor-

tant and non-trivial examples (§3). In §4 we describe how we represent arbitrary (non-unitary,

effectful) quantum operations and we present some examples of effectful quantum programs and

algorithms. The linear features of Idris are crucial for achieving this. We discuss why Qimaera is

suitable for variational quantum programming and we provide implementations of the VQE and
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QAOA algorithms in §5. Finally, we discuss related work and future work in §6. The Idris source

code for Qimaera is available at https://github.com/zamdzhiev/Qimaera under the MIT license. In

this paper, we provide some excerpts of the source code, but we recommend consulting the code

itself, because it contains many useful comments.

2 BACKGROUND

In this section we introduce the relevant background so that readers may follow our subsequent

development.

2.1 �antum Computation

Readers interested in a detailed introduction to quantum computing may consult [16]. In this sec-

tion we summarise the basic notions that are relevant for our development.

2.1.1 �bits. The simplest non-trivial quantum system is the quantum bit, often abbreviated as

qubit. Qubits may be thought of as the quantum counterparts of the bit from classical computation.

A qubit |k〉 is represented as a normalised vector in C2. The computational basis is given by the

pair of vectors |0〉 def
=

(

1

0

)

and |1〉 def
=

(

0

1

)

, which may be seen as representing the classical bits 0

and 1. An arbitrary qubit is described by |k〉 = 0 |0〉 + 1 |1〉 where 0, 1 ∈ C and |0 |2 + |1 |2 = 1.

2.1.2 Superposition. A qubit may be in (uncountably) many different states, whereas a classical

bit is either 0 or 1. When the linear combination |k〉 = 0 |0〉 + 1 |1〉 is non-trivial, then we say that

|k〉 is in superposition of |0〉 and |1〉. Superposition is a very important quantum resource which is

used by many quantum algorithms.

2.1.3 Composite Systems. The state space that describes a system of = qubits is the Hilbert space

C
2= . If |k〉 and |q〉 are two states of = and< qubits respectively, then the composite = +< qubit

state |kq〉 def
= |k〉 ⊗ |q〉 is described by the Kronecker product ⊗ of the original states.

2.1.4 Unitary �antum Operations. A quantum state |k〉 ∈ C2= may undergo a unitary evolution

described by a unitary matrix* ∈ C2=×2= in which case the new state of the system is described by

the vector * |k〉 . Unitary operations (and matrices) are closed under sequential composition (de-

scribed by matrix multiplication ◦) and under parallel composition (described by Kronecker prod-

uct ⊗ ). Sequential composition of unitary operations is used to describe the temporal evolution

of quantum systems, whereas the parallel composition is used to describe their spatial structure.

The unitary quantum operations are also often called unitary gates. One typically chooses a

universal gate set which is a small set of unitary operations that suffices to express all other unitary

operations via (parallel and sequential) composition. The universal gate set that we choose for our

development is standard and we specify these unitary operations next by giving their action on

the computational basis (which uniquely determines the operations).

The Hadamard Gate, denoted � , is the 1-qubit unitary map whose action on the computational

basis is given by

� |0〉 = 1
√
2
(|0〉 + |1〉) � |1〉 = 1

√
2
(|0〉 − |1〉)

and its primary purpose is to generate superposition. The Phase Shift Gate, denoted % (U), forU ∈ R,
is a 1-qubit unitary map whose action on the computational basis is given by:

% (U) |0〉 = |0〉 % (U) |1〉 = 48U |1〉
and its primary purpose is to modify the phase of a quantum state. The family of Phase Shift Gates

is parameterised by the choice of U ∈ R and important special cases include the unitary gates
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� % (U)

Fig. 1. The Hadamard, Phase Shi� and CNOT gates.

�|0〉

|0〉

Fig. 2. Preparation of the Bell state using atomic gates.

)
def
= % (c/4) and /

def
= % (c). The Controlled-Not Gate (CNOT), is a 2-qubit unitary map whose

action on the computational basis is given by

CNOT |00〉 = |00〉 CNOT |01〉 = |01〉
CNOT |10〉 = |11〉 CNOT |11〉 = |10〉

and this unitary map may be used to generate quantum entanglement (see §2.1.7).

Unitary gates admit a diagrammatic representation as quantum circuits. The atomic unitary

gates we described above are shown in Figure 1. Composite unitary gates may also be described

as circuits (see Figure 2): sequential composition amounts to plugging wires of subdiagrams and

parallel composition amounts to juxtaposition.

2.1.5 Controlled Unitary Operations. The CNOT gate is the simplest example of a controlled uni-

tary gate. Given a unitary gate * : C2
= → C

2= , the controlled-* unitary gate is the unitary gate

�* : C2
=+1 → C2=+1 whose action is determined by the assignments

�* (|0〉 ⊗ |k〉) = |0〉 ⊗ |k〉 �* (|1〉 ⊗ |k〉) = |1〉 ⊗ (* |k〉).

Controlled unitary operations are ubiquitous in quantum computing and they are graphically de-

picted as

*

using a similar notation to that of the CNOT gate.

2.1.6 Inverse Unitary Operations. Every unitary operation * is reversible with the inverse opera-

tion given by the conjugate transpose, denoted * †, which is again a unitary matrix. Applying the

inverse operation (also known as the adjoint) of a given unitary is also ubiquitous.

2.1.7 �antum Entanglement. A quantum state |k〉 ∈ C2= , with = > 1, is said to be entangled

when there exists no non-trivial decomposition |k〉 = |q〉 ⊗ |g〉. Quantum entanglement is a very

important resource in quantum computation which is exhibited by many quantum algorithms.

Because of the possibility of entanglement, we cannot, in general, break down quantum systems

into smaller components and we are often forced to reason about such systems in their entirety.

The most important example of an entangled state is the Bell state given by |Bell〉 def
=

|00〉+|11〉√
2

.

2.1.8 Preparation of�antum States. Preparing a new qubit in state |0〉 is an admissible physical

operation. This, together with application of unitary gates as part of the computation, allows us to
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prepare arbitrary quantum states, e.g., the Bell state can be prepared by taking |Bell〉 = (CNOT ◦
(� ⊗ � )) |00〉. See Figure 2 for the corresponding circuit.

2.1.9 Measurements. Quantum information cannot be directly observed without affecting the

state of the underlying system. In order to extract information from quantum systems, we need

to perform a quantum measurement on (parts of) our systems. For example, when performing a

quantum measurement on a qubit in the state |k〉 = 0 |0〉 + 1 |1〉, there are two possible outcomes:

either the quantum system will collapse to state |0〉 and we obtain the classical bit 0 as evidence

of this event, or, the quantum system will collapse to state |1〉 and we obtain the classical bit 1 as

evidence of this event. The first outcome (corresponding to bit 0) occurs with probability |0 |2 and
the second outcome (corresponding to bit 1) occurs with probability 1 − |0 |2 = |1 |2. In general,

when we measure = qubits simultaneously, we obtain a bit string of length = which determines

the event that occurred and the quantum system collapses to a corresponding state with some

probability, both of which are determined via the Born rule of quantum mechanics. Therefore,

quantum measurements induce evolutions which are probabilistic and irreversible (or destructive),

which distinguishes them from unitary evolutions, which are deterministic and reversible.

2.1.10 No-Cloning Theorem. Unlike classical information, quantum information cannot be uni-

formly copied. This is made precise by the no-cloning theorem of quantum mechanics [28]: there

exists no unitary operation* : C4 → C4, such that for every qubit |k〉 :* (|k〉 ⊗ |0〉) = |k〉 ⊗ |k〉 .
This means that copying of quantum information is a physically inadmissible operation. Ideally,

quantum programming languages should be designed so that these kinds of errors are detected

during type checking and not at runtime.

2.2 The Idris 2 Language

In this section, we give a short overview of the Idris 2 language and its main features that are

relevant for the development of Qimaera. Idris 2 is a pure functional language with a syntax influ-

enced by that of Haskell. The main additional features, compared to Haskell, are dependent types

and linearity, both of which are crucial for Qimaera. Its type system is based on Quantitative Type

Theory [3, 14], which specifies how dependent types and linearity are combined.

2.2.1 Dependent Types. In Idris, types are first-class primitives and they may be manipulated like

any other construct of the language. This allows us to formulate more expressive types that can

depend on values, and hence it enables us to make some properties and program invariants explicit.

Example 2.2.1. The type of vectors is a simple and useful example of a dependent type. A vector

is a list with a fixed length that is part of the type. It can be defined as follows, where S is the

successor function for natural numbers, and a is a polymorphic type:

data Vect : Nat -> Type -> Type where

Nil : Vect 0 a

(::) : a -> Vect k a -> Vect (S k) a

The type Vect has two constructors (i.e., introduction rules). The first one constructs the empty

vector, of length zero. The second one is used to introduce non-empty vectors: a vector with k+1

elements of type a is constructed by combining an element of type a and a vector of size k.

Type dependency allows us to specify useful program properties and type checking ensures that

they hold. For instance, we can define an append function that concatenates two vectors. Then,

the size of the output vector is the sum of the sizes of the input vectors and this is specified by its

type.
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append : Vect n a -> Vect m a -> Vect (n + m) a

This information allows the language to detect a larger class of programming errors. Note that type

dependency information is not available for the analogous function on lists. Type dependencymay

also be used to express constraints on the inputs of a function, e.g. we can define a total function,

called pop, that cannot be applied to an empty vector.

pop : Vect (S k) a -> Vect k a

pop (x :: xs) = xs

Writing "pop []" is now an error which is detected statically, rather than dynamically, and we

note that the same cannot be achieved if we were to replace vectors with lists.

With the addition of dependent types, we sometimes have to prove the equivalence between

types. For example, the types Vect (n + k) Nat and Vect (k + n) Nat are equivalent, but Idris

cannot (at present) infer this, so the programmer has to sometimes provide a proof that addition

is commutative (which is easy to do). All proof obligations needed for our development are simple

and concise.

2.2.2 Linearity. The type system of Idris 2 is based on Quantitative Type Theory, where every

function argument is associated with a multiplicity that states the number of times the variable

is used at runtime. This multiplicity can be 0, 1 or l . An argument with multiplicity 0 is only

used at compile time (to determine type dependency information) and is erased at runtime. A

linear argument has multiplicity 1 and it is used exactly once at runtime. Finally, l represents

the unrestricted multiplicity, which is also default, where the function argument may be used any

number of times.

Example 2.2.2. Consider the pop function which we just discussed. The (implicitly bound) vari-

ables k and a have multiplicity 0, because they are not explicitly specified as separate arguments,

and they are not accessible at runtime in the function. The variables x and xs, which are explicitly

bound, have the default (unrestricted) multiplicity.

Example 2.2.3. An important typewhichwe define in Qimaera is the type of linear vectors, which

we write as LVect. The only difference, compared to the standard vectors in Idris, is that the (::)

constructor for LVect is a linear function in all of its arguments. Linearity in Idris 2 is specified by

writing the multiplicity 1 in front of each argument.

data LVect : Nat -> Type -> Type where

Nil : LVect 0 a

(::) : (1 _ : a) -> (1 _ : LVect k a) ->

LVect (S k) a

We also use linear pairs that are already defined in Idris 2.

data LPair : Type -> Type -> Type

(#) : (1 _ : a) -> (1 _ : b) -> LPair a b

Linearity allows us to specify and enforce constraints on function arguments, e.g. it prevents us

from duplicating data, so the function definition below leads to an error:

copy : (1 _ : a) -> LPair a a

copy x = x # x

Error : While processing right hand side of

copy. There are 2 uses of linear name x.
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data Unitary : Nat -> Type where

IdGate : Unitary n

H : (j : Nat) ->

{auto prf : (j < n) = True} ->

Unitary n -> Unitary n

P : (p : Double ) -> (j : Nat) ->

{auto prf : (j < n) = True} ->

Unitary n -> Unitary n

CNOT : (c : Nat) -> (t : Nat) ->

{auto prf1 : (c < n) = True} ->

{auto prf2 : (t < n) = True} ->

{auto prf3 : (c /= t) = True} ->

Unitary n -> Unitary n

Fig. 3. The Unitary data type (file: Unitary.idr).

Linearity is prominently used in Qimaera. In particular, when manipulating quantum informa-

tion, linearity is enforced in order to properly consume quantum resources and comply with the

laws of quantum mechanics.

3 UNITARY OPERATIONS IN QIMAERA

As we saw in §2.1, unitary transformations have a special role in quantum computation. In most

non-variational quantum algorithms, the vast majority of the programming effort consists in imple-

menting the required unitary operations. In this section, we describe our representation of unitary

transformations in Qimaera as an algebraic data type called Unitary. Every value of this type is,

by design, an algebraic decomposition of a unitary operation in terms of the atomic unitary gates

that we identified in §2.1.4.

The Unitary data type is very useful, because it allows us to adopt a high-level algebraic and

scalable approach towards the reversible fragment of quantum computation. This provides the

programmer with many benefits as we show in this section. However, using the Unitary data

type is actually entirely optional. Users who are interested in effectful quantum programming

do not have to use it (see §4) and they may still recover the full power of (variational) quantum

programming, but at the cost of losing the algebraic decomposition of unitary operations. To utilise

the full potential of Qimaera, programmers should make use of all the constructions described in

this section and the next one.

3.1 The Unitary Data Type

Quantum unitary operations admit a compositional and algebraic representation based on the

atomic gates from the universal gate set in §2.1.4. Our idea for the representation of unitary op-

erations is based on this, or equivalently, on how unitary operations may be expressed in terms

of unitary quantum circuit diagrams. Because of these reasons, linearity is not required for our

formalisation of unitary operations. The code for the Unitary data type is listed in Figure 3 and

we now describe our representation in greater detail.

Given a natural number n : Nat, the type of unitary operations on n qubits is given by Unitary

n. Note that Unitary is an algebraic data type with a simple type dependency on the arity of the

desired operation. The Unitary type has four different introduction rules which we describe next.
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The first constructor, IdGate, represents the identity unitary operation on n qubits. Diagramat-

ically, we can see this as constructing a circuit of n wires, without applying any other gates on

any of the wires. It has a unique argument, n, which is implicit – it can be omitted when calling

the IdGate constructor and it will often be inferred by Idris.

The second constructor, H, should be understood as applying the Hadamard gate � to the j-th

qubit of some previously constructed unitary circuit which is specified as the last argument. The

first implicit argument, n, is simply the arity of the resulting unitary operation. The second implicit

argument, prf, is a proof obligation that j is smaller than n. This ensures that the argument j iden-

tifies an existing wire of the previously constructed unitary circuit (last argument) and therefore

the overall definition is algebraically and physically sound. We note that the implicit argument

prf may be removed from our implementation if we change the type of j to Fin n, the type of

integers less than n. However, in our experience, Idris has better support for Nat than for Fin and

for this reason we chose to keep the prf argument.

The third constructor, P, should be viewed as applying the % (?) gate, where the real number

? ∈ R is approximated by the term p : Double.1 The remaining arguments serve the same

purpose as those for H.

The final constructor, CNOT, should be understood as applying the CNOT gate, where c identifies

the wire used for the control (the small black dot in Figure 1), t identifies the wire of the target (the

crossed circle in Figure 1) and the last (unnamed) argument is the previously constructed unitary

circuit on which we are applying CNOT. The remaining arguments are implicit and often do not

have to be provided by the users: the argument n is the arity of the unitary; prf1 and prf2 ensure

that c and t identify valid wires of the unitary circuit; prf3 ensures that the control and target

wires are distinct and therefore the overall application of CNOT is physically and algebraically

admissible.

In our representation of quantum unitary operations, we make use of type dependency to im-

pose proof obligations on some of our constructors in order to guarantee that the representation

makes sense in physical and algebraic terms. On first glance, this might seem like a burden for the

users of the library. However, in our experience, Idris can often automatically infer the required

proofs (without any assistance from the user) and we had to do very little manual theorem proving.

This is discussed in detail in the next subsection.

3.2 Constructing Unitary Transformations

The four basic introduction rules of the Unitary type allow us to define high-level functions in Idris

that can be used to construct complex unitary circuits out of simpler ones. We discuss this here

and we show that the proof obligations from Figure 3 are not severe and can be easily ameliorated

and often completely sidestepped using our high-level functions.

First, we point out that auto-implicit argumentsmay often be inferred by Idris via suitable search.

For example, if all the arguments are known statically, the required proofs will be discovered by

Idris and the users do not have to manually provide them.

Example 3.2.1. The unitary gate depicted in the circuit from Figure 2 may be constructed in the

following way:

toBellBasis : Unitary 2

toBellBasis = CNOT 0 1 (H 0 IdGate )

1This approximation is not a big limitation – in fault-tolerant quantum computing one usually replaces the% (?) gate family

with a single ) = % (c/4) gate and the resulting gate set suffices to approximate any unitary with arbitrary precision. So

we can easily replace P with a T constructor.

8
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In this example, Idris is able to infer all the implicit arguments and there is no need to provide any

proofs. If we do not satisfy one of the constraints, e.g. if we write CNOT 1 1 above (which does not

make physical sense), then we get the following error during type checking:

Error : While processing right hand side of

toBellBasis . Can 't find an implementation for

not (== 1 1) = True.

An error is also reported if we provide a wire number larger than 1. It is also useful to define

standalone unitary gates for the �, % (A ) and CNOT gates as follows:

HGate : Unitary 1

HGate = H 0 IdGate

PGate : Double -> Unitary 1

PGate r = P r 0 IdGate

CNOTGate : Unitary 2

CNOTGate = CNOT 0 1 IdGate

3.2.1 Composing Unitary Circuits. Our libraries provide functions for sequential composition (compose)

and parallel composition (tensor) of unitary operations:

compose : Unitary n -> Unitary n -> Unitary n

tensor : {n : Nat} -> {p : Nat } -> Unitary n -> Unitary p -> Unitary (n + p)

Notice that both functions do not impose any proof obligations on the user. Thismeans that the pri-

mary algebraic way for composing unitary operations may be done without any need for theorem

proving. The use of these functions is ubiquitous in practice and we introduce the infix synonyms

(.) and (#) for compose and tensor, respectively.

Example 3.2.2. The toBellBasis gate from Example 3.2.1 may be equivalently expressed in the

following way:

toBellBasis : Unitary 2

toBellBasis = CNOTGate . (HGate # IdGate )

Qimaera provides another, more general, form of composition via the function apply whose

type is as follows:

apply : {i : Nat} -> {n : Nat} ->

Unitary i -> Unitary n ->

(v : Vect i Nat) ->

{auto _ : isInjective n v = True} ->

Unitary n

The apply function is used to apply a smaller unitary circuit of size i to a bigger one of size

n, giving the vector v of wire indices on which we wish to apply the smaller circuit. It needs

one auto-implicit proof which enforces the consistency requirement that all indices of the wires

specified by v are pairwise distinct and smaller than n. In fact, the apply function implements

the most general notion of composition possible and both sequential and parallel composition can

be realised as special cases using it. The importance of the vector v is that it determines how to

apply the smaller unitary circuit of arity i to any selection of i wires of the larger unitary circuit,

and moreover, it also allows us to permute the inputs/outputs of the smaller unitary circuit while

doing so. More specifically, if the :-th entry of the vector v is the natural number ? , then the :-th
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apply toBellBasis U [0,1]
��

% (c)

apply toBellBasis U [0,2]
��

% (c)

apply toBellBasis U [2,0]

�% (c)

�

apply toBellBasis U [2,1]

�% (c)

�

Table 1. Examples illustrating the apply function.

input/output of the smaller unitary circuit will be applied to the ?-th wire of the larger unitary

circuit. This is best understood by example.

Example 3.2.3. Consider the following code sample:

U : Unitary 3

U = HGate # IdGate {n = 1} # (PGate pi)

apply_example : Unitary 3

apply_example = apply toBellBasis U v

where v is a vector of length two. Here toBellBasis is given in Example 3.2.1 and represents the

circuit given below left; U represents the circuit given below right:

�

% (c)

�

Table 1 shows what unitary circuit is specified under different values of v. Here, Idris can auto-

matically infer the required proofs and the user does not have to provide them.

Remark 3.2.4. Instead of using apply, there is another possible approach, in the spirit of symmetric

monoidal categories [13, §XI], where we could add one extra introduction rule to the Unitary type

for representing permutations of wires. However, in our view, this approach is somewhat awkward,

because one does not usually think of permutations (induced by the symmetricmonoidal structure)

as physical gates.

3.2.2 Adjoints of Unitary Circuits. Qimaera also provides a function

adjoint : Unitary n -> Unitary n

which computes the adjoint (i.e., inverse) of a given unitary circuit. As explained previously, one

often has to apply the inverse of a given unitary circuit, so having a high-level method such as this

10
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� '2 '3 ... '=−1 '=

� '2

...

...

...

...

...

� '2

�

Fig. 4. The QFT unitary circuit on = qubits.

is useful. Our implementation uses the obvious algorithm for synthesising the adjoint. This may

be used, for example, to automatically uncompute operations that we perform on ancilla qubits,

which is often required.

3.2.3 Controlled Unitary Circuits. We also implement a function

controlled : {n : Nat} -> Unitary n -> Unitary (S n)

which given a unitary circuit * constructs the corresponding controlled unitary circuit �* . Our

implementation uses the obvious algorithm for doing this, but more efficient algorithms may also

be implemented in the future.

3.2.4 Analysis of Unitary Circuits. Unitary circuits are represented in a scalable and compositional

way in Qimaera, thus we can use Idris to optimise them. The function:

optimise : Unitary n -> Unitary n

may be used to optimise a given (very large) unitary circuit. So far, this function provides some

basic optimisations, but more sophisticated ones may be added in the future. The point we wish to

make is that unitary circuits in Qimaera may be analysed andmanipulated like any other algebraic

data type using the full capabilities of Idris. In fact, the file Unitary.idr provides many functions

that do this, e.g. we provide functions for calculating the circuit depth, calculating the number of

specific atomic gates used by a circuit, drawing circuits in the terminal, exporting circuits to Qiskit

(so that users may then use external analysis tools), etc.

3.3 Example: The �antum Fourier Transform

The Quantum Fourier Transform (QFT) is a very important unitary operator that is used in Shor’s

polynomial-time algorithm for integer factorisation [24]. The unitary circuit which realises QFT

on = qubits is shown in Figure 4, where '=
def
= %

(

2c
2=

)

. The Qimaera code which implements this

unitary circuit is shown in Figure 5. Notice that we make use of the controlled function from

§3.2.3 in the function cRm, so that we can automatically implement the many controlled '= gates

that are required. In this example, all the parameters are universally quantified, so we need a few

very short and simple proofs in the code: one for using the apply function and one for correctly

unifying the size of the circuit. Currently Idris cannot automatically discover these proofs, but we

hope in the future its capabilities for proof search would improve to the point where it could. If

this were to happen, then we would not have to manually provide these proofs.

11
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Rm : Nat -> Unitary 1

Rm m = PGate (2 * pi / (pow 2 (cast m)))

cRm : Nat -> Unitary 2

cRm m = controlled (Rm m)

qftRec : (n : Nat) -> Unitary n

qftRec 0 = IdGate

qftRec 1 = HGate

qftRec (S (S k)) =

let t = (qftRec (S k)) # IdGate

in rewrite sym $ lemmaplusOneRight k

in apply (cRm (S k)) t [S k,0]

{prf = lemmaInj1 k}

qft : (n : Nat) -> Unitary n

qft 0 = IdGate

qft (S k) =

let g = qftRec (S k)

h = (IdGate {n = 1}) # (qft k)

in h . g

Fig. 5. Qimaera code for QFT (file: QFT.idr).

4 EFFECTFUL QUANTUM COMPUTATION

In the previous section we showed how unitary circuits can be represented in Qimaera in a compo-

sitional, algebraic and scalable way. This suffices to capture the pure, deterministic and reversible

fragment of quantum computation. However, as we explained in §2.1, we need to also consider ef-

fectful and probabilistic quantum processes (e.g. measurements) in order to recover the full power

of quantum computation. In this section we show how this can be done in a type-safe way by

using monads, linearity and dependent types.

4.1 Representation of�antum Effects

We now explain how the quantum program dynamics are represented in Qimaera in a type-safe

way. We are (roughly) inspired by representing the notion of a quantum configuration as it appears

in [12, 19, 22], which is in turn used to formally describe the operational semantics of quantum

type systems.

4.1.1 �bits in Qimaera. Because of the possibility of quantum entanglement (see §2.1.7), we

cannot describe the state of an individual qubit which is part of a larger composite system. On the

other hand, we wish to be able to refer to parts of the whole system by identifying specific qubit

positions. In Qimaera, we introduce the following type declaration:

data Qubit : Type where

MkQubit : (n : Nat) -> Qubit

12
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The argument of type Nat is used as a unique identifier for the constructed qubit. The constructor

MkQubit is private and users of our libraries cannot access it. Instead, our libraries provide func-

tions (discussed later) that ensure that terms of type Qubit are always created with a fresh (i.e.

unique) natural number that serves as its identifier. In fact, these functions are the only way users

can access or manipulate qubits and, moreover, our users cannot access these unique identifiers.

This allows us to formulate a representation where terms of type Qubit unambiguously refer to

the relevant parts of larger composite systems. Therefore, a term of type Qubit should be under-

stood as a pointer, or as a unique identifier, of a 1-qubit subsystem of some larger quantum state.

Terms of type Qubit should not be understood as representing any sort of state, because they do

not carry such information.

4.1.2 Probabilistic Effects. As we previously discussed in §2.1.9, quantum measurements induce

probabilistic computational effects which are inherited by the classical side of the computation in

variational quantum algorithms. Furthermore, in our intended computational scenario, the classi-

cal computer (onwhich Idris is running) sends instructions to, and receives data from, the quantum

device. In order to correctly model all of this, it is clear that we have to use the IO monad in order

to encapsulate these effects.

However, when representing quantum program dynamics, we also need to enforce linearity, but

all the functions provided by the IO monad (e.g. pure which introduces pure values to monadic

types) are not linear in any of their arguments. This creates a problem which may be solved by

using the LIO library, which extends the IO monad with linearity. For brevity, we define R to be

our linear IO monad:

R : Type -> Type

R = L IO {use = Linear }

Then, by using R we can combine IO effects (and thus also probabilistic effects) and linearity in a

suitable way.

4.1.3 �antum State Transformer. Quantum computation is effectful, and moreover, quantum in-

formation cannot be observed by the classical computer (onwhich Idris is running): it only receives

classical information through communication with the quantum device. Because of this, we have

to adopt a more abstract view on the hybrid classical-quantum computational process. In order to

do this, we define an (abstract) quantum state transformer by combining several different concepts:

indexed state monads [2]2, linearity and IO (and thus also probabilistic) effects. Our representation

of these ideas in Qimaera is shown in Figure 6, where we omit the function definitions for brevity.

The type QStateT is parameterised by a choice of three (arbitrary) types, so it is fairly abstract.

Soon, we will see that it is very useful for our purposes. The intended interpretation of this type

is the following: any value of type

QStateT initialType finalType returnType

represents a stateful (quantum) computation starting from a (quantum) state of type initialType

and ending in a (quantum) state of type finalTypewhich produces a user-accessible result of type

returnType during the computation. For example, a value of type

QStateT (LPair Qubit Qubit) Qubit Bool

should be understood as a quantum process that transforms a two-qubit state into a single-qubit

state and returns a single (classical) value of type Bool to the user. The functions presented in

Figure 6 allow us to adopt amonadic programming discipline when working with QStateT and we

2See [23] for a Haskell implementation of this idea.
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data QStateT :

Type -> Type -> Type -> Type where

MkQST :

(1 _ : (1 _ : initialType ) ->

R (LPair finalType returnType )) ->

QStateT initialType finalType returnType

runQStateT : (1 _ : initialType ) ->

(1 _ : QStateT initialType

finalType returnType ) ->

R (LPair finalType returnType )

pure : (1 _ : a) -> QStateT t t a

(>>=) : (1 _ : QStateT i m a) ->

(1 _ : ((1 _ : a) -> QStateT m o b)) ->

QStateT i o b

Fig. 6. �antum state transformer (file: QStateT.idr).

interface QuantumOp (0 t : Nat -> Type) where

newQubits : (p : Nat ) ->

QStateT (t n) (t (n+p)) (LVect p Qubit)

applyUnitary : {n : Nat } -> {i : Nat} ->

(1 _ : LVect i Qubit) -> Unitary i ->

QStateT (t n) (t n) (LVect i Qubit)

measure : {n : Nat} -> {i : Nat} ->

(1 _ : LVect i Qubit) ->

QStateT (t (i + n)) (t n) (Vect i Bool)

run : QStateT (t 0) (t 0) (Vect n Bool) ->

IO (Vect n Bool)

Fig. 7. The QuantumOp interface (file: QuantumOp.idr).

do so henceforth. We remark QStateTmakes use of the monad R which encapsulates the IO (and

probabilistic) effects. Note also that linearity is enforced when working with QStateT.

4.1.4 Effectful �antum Programming. The QStateT monad can be used to define a suitable ab-

stract interface for quantum programming. In Figure 7, we present an excerpt of the QuantumOp

interface which allows us to easily write quantum programs and execute them in a type-safe way.

All of the (variational) quantum algorithms we present are implemented using this interface that

we describe next.

The function newQubits is used to prepare p new qubits in state |0〉 and the function returns a

linear vector of length p with the qubit identifiers of the newly created qubits.

The function applyUnitary is used to apply a unitary operation of arity i to the qubits specified

by the argument LVect (which also determines the order of application) and the operation returns

an LVectwhich serves the same purpose – it identifies the qubits which were just modified by the

unitary operator. The file QuantumOp.idr also provides functions applyH, applyP and applyCNOT

14
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which can be seen as special cases of applyUnitary.However, these three functions do not depend

on the Unitary type.

The measure function is used to measure i qubits identified by the LVect argument and it

returns a value of type Vect i Bool that represents the result of the measurement. During this

process, the i qubits are destroyed, as one can see from the provided type information.

Finally, the function run is used to execute quantum algorithms on the quantum device and

obtain the classical information returned from it. Notice that run can be used to execute effectful

quantum processes which start from the trivial quantum state (on zero qubits) andwhich terminate

in the same trivial quantum state, but which also produce some number of classical bits as a user-

accessible return result. This may be used to run quantum algorithms: in a typical situation, we

start with the trivial quantum state (on zero qubits), we prepare= qubits in state |0〉, we apply some

unitary operations on them, and we finally measure all the qubits, thereby destroying all the qubits

and producing = bits of classical information. This quantum algorithmmay then be represented as

a value of type QStateT (t 0) (t 0) (Vect n Bool). Running it, however, produces a classical

value of type IO (Vect n Bool), because the execution is probabilistic and because our classical

computer (on which we are running Idris) has to perform IO actions to communicate with the

quantum device.

In fact, all of the above operations modify the quantum state on the quantum device and may

cause IO effects, because of the need to communicate with the quantum device. This is indeed

reflected by our implementation. Observe, that our interface is defined using the QStateTmonad

transformer which does incorporate IO effects (via the R monad we discussed previously).

The best way to understand how this interface may be used for quantum programming is to

look at examples.

Example 4.1.1. A fair coin toss may be implemented using quantum resources. The process is

simple: (1) prepare the state |0〉; (2) apply the � gate to it; (3) measure the qubit and return this as

output. We implement this as follows:

coin : QuantumOp t => IO Bool

coin = do

[b] <- run (do

q <- newQubit {t = t}

q <- applyH q

r <- measure [q]

pure r

)

pure b

The top-level do block simply realises monadic sequencing for the standard IO monad. The do

block within the run environment is more interesting and crucial for our development. It performs

monadic sequencing for the QStateTmonad and it represents the simple three-step algorithm we

just described. The call to the run function executes this algorithm and users obtain the produced

classical information by storing it in the variable b of type Bool. We emphasise that linearity is

enforced within the run environment and this is what ensures the type safety of our approach,

e.g. all of the following errors are statically detected and rejected by Idris: passing the qubit q to a

non-linear function, copying the qubit q, forgetting to measure the qubit q so that it is implicitly

discarded, etc. For example, if in the above code we replace the last two statements in the run

environment with "pure True", then Idris statically detects this error.

The function coin from Example 4.1.1 is implemented using our abstract interface. This means

we can use this function in any concrete implementation of the QuantumOp interface. Since the
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RUS : QuantumOp t => (1 _ : Qubit ) ->

(u' : Unitary 2) -> (e : Unitary 1) ->

QStateT (t 1) (t 1) Qubit

RUS q u' e = do

q' <- newQubit

[q',q] <- applyUnitary [q',q] u'

b <- measureQubit q'

if b then do

[q] <- applyUnitary [q] (adjoint e)

RUS q u' e

else pure q

example_u ' : Unitary 2

example_u ' = H 0 $ T 0 $ CNOT 0 1 $ H 0 $ CNOT 0 1 $ T 0 $ H 0 IdGate

runRUS : QuantumOp t => IO Bool

runRUS = do

[b] <- run (do

q <- newQubit {t = t}

q <- RUS q example_u ' IdGate

measure [q]

)

pure b

testRUS : IO Bool

testRUS = runRUS {t = SimulatedOp }

Fig. 8. Repeat-until-success algorithm (file: RUS.idr).

authors do not have any quantum hardware, we provide one concrete implementation of this in-

terface, called SimulatedOp, which performs linear-algebraic simulation of all the required opera-

tions. Once quantum hardware becomesmore readily available, we can provide additional concrete

implementations of the interface. For example, if we wish to use the coin function, then the code:

testCoin : IO Bool

testCoin = coin {t = SimulatedOp }

defines a new function, called testCoin, which does the same as coin, but it specifically instructs

Idris to use linear-algebraic simulation. We emphasise that all of our quantum algorithms are writ-

tenw.r.t. our abstract interface, so there is no need to reimplement them for any additional concrete

implementations of the interface.

4.2 Example: Repeat-Until-Success Algorithm

Repeat-until-success (RUS) [17] is an algorithm for implementing quantum unitary operators by

using quantum measurements and recursion. The main advantage in using RUS over traditional

techniques that synthesise unitary operators, is that RUS usually requires fewer applications of

the ) gate, which is expensive in terms of error correction.

In the simplest case, we wish to realise a fixed single-qubit unitary operator* : C2 → C2 . The
RUS algorithm is as follows. Given an input qubit |k〉 , then: (1) prepare a new qubit in state |0〉; (2)
apply a two-qubit unitary operator * ′ (chosen in advance depending on * ); (3) measure the first

qubit; (4) if the measurement outcome is 0 (which occurs with probability ? > 0), then the output

state is* |k〉, as required, and the algorithm terminates; otherwise the current state is � |k〉, where
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� is some other unitary operator (chosen in advance depending on* ), so we apply �† to this state
and we go back to step (1). The unitary operators * ′ and � are chosen in advance, depending on

* , before the algorithm starts so that the above conditions are satisfied.

This process always terminates in state * |k〉 (provided ? > 0) so RUS indeed implements the

unitary operator * . Note that this is an algorithmic realisation of * , not an algebraic one, and

so we cannot write a program of type Unitary that achieves this. Instead, we represent this as a

quantum program in Figure 8. There, RUS q u’ e is the quantum state transformerwhich is the RUS

algorithm as above. The function runRUS simply executes the RUS algorithm on a qubit in state

|0〉, with the unitary operator chosen from [17, Figure 8], then measures the qubit and returns the

outcome. Both of these functions are written using our abstract interface. The function testRUS is

the same as runRUS, but it also instructs Idris to use linear-algebraic simulation for the execution.

Remark 4.2.1. It is possible to make the RUS function non-linear in the qubit argument and still

get a valid function. However, such a function cannot be called from the run environment (which

enforces linearity) as we do in the runRUS function. This leads to an error which is statically de-

tected by Idris. Therefore, such a non-linear RUS function would be useless, because we can never

actually run it.

5 VARIATIONAL QUANTUM PROGRAMMING

In the previous section we saw that Qimaera is suitable for writing recursive and effectful quantum

programs that make use of quantummeasurements. Moreover, Idris 2 is an excellent programming

language with an advanced type system and fist-class support for classical programming features.

In order to demonstrate that Qimaera is suitable for variational quantum programming, we also

have to show that both classical and quantum programming features may be elegantly combined.

This is the purpose of this section andwe achieve this through the ultimate test – implementing the

two most prominent variational quantum algorithms: the Quantum Algorithm for Approximate

Optimisation (QAOA) [8] and the Variational Quantum Eigensolver (VQE) [20]. To the best of

our knowledge, this is the first implementation of these algorithms that has been achieved in a

type-safe framework.

General Framework. Both variational algorithms presented in this section are trying to find the

minimum (or maximum) eigenvalue of a Hamiltonian. A Hamiltonian is a Hermitian (i.e., self-

adjoint) matrix � . Its minimum eigenvalue is the minimum (real) value _ s.t. � |k〉 = _ |k〉 for
some nonzero vector |k〉. As � is unitarily diagonalizable, this is equivalent to the minimum of

〈k | � |k〉 for all vectors |k〉 of norm 1, where 〈k | def= |k〉†.
Both algorithms proceed in the same way to find this value. They start with some assumption

on what the vector |k〉 looks like and usually |k〉 is prepared by a quantum circuit that depends

on some real parameters U1, . . . , U? . In the VQE algorithm, this is called the Ansatz.

By measuring this state |k〉, one obtains some information on the value of 〈k |� |k〉. This infor-
mation can then be fed to a classical optimizer to change the value of the parameters U1, . . . , U? for

subsequent execution.

This classical-quantum back and forth is repeated until some satisfactory termination condition

has been satisfied (e.g. simply repeat this : times, where : ∈ N is some large constant). However,

in both algorithms, there is no guarantee that we will find the minimum eigenvalue.

QAOA. QAOA is a variational algorithm [8] that approximately solves optimization problems. Let

5 : {0, 1}= → R be a function for which we want to find its minimum. We see 5 as a diago-

nal Hamiltonian over = qubits defined by � |G〉 = 5 (G) |G〉 for all G ∈ {0, 1}=. We are therefore

searching for the minimum eigenvalue of this Hamiltonian.
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For QAOA to work, the Hamiltonian � should have a special form so that a circuit for 4W� is

easy to make, whereW ∈ R is a parameter (to be tuned) that is used by the algorithm. Awell-known

and important example is to compute the maximum cut of an undirected graph, i.e., to solve the

MAXCUT problem.

Our implementation for QAOA on the MAXCUT problem is presented in the file QAOA.idr

and an excerpt is shown in Figure 9. The Ansatz depends on the graph � for which we want the

maximum cut, a depth parameter ? , and some real parameters V8 , W8 . The depth parameter ? ∈ N is

usually fixed to be small, and we have a guarantee that the results of our algorithm become better

when ? becomes larger. The real parameters V8 and W8 are used to determine rotation angles for

some of the unitary operators that we need for constructing the relevant circuits.

Following the general framework, in our implementation, we have a function QAOA_Unitary,

that takes these parameters as input and produces a unitary circuit that may be used to prepare

the state |k〉 when applied to the initial state |0〉⊗= . We then measure this state |k〉 and present

the result (a cut of the graph in the obvious binary encoding) to an Optimiser. Our optimiser is

implemented by the function classicalOptimisation that uses all observable information from

all previous runs (which amounts to the values of the parameters V8 , W8 and the value of the cuts

that have been previously obtained through quantum measurements) to compute the subsequent

rotation parameters V8 , W8 that we will use for the next iteration. The type of this function indicates

that it uses the IO monad: this is because we wish to allow the function to use probabilistic opti-

misation algorithm or even external tools. The simplest implementation of this function chooses

the rotation parameters at random.

The interplay between the classical and the quantum part is presented in Figure 9. The function

QAOA takes as input an integer : representing how many times the whole routine will be done, the

depth ? of the circuit, and the graph � on which to compute the cut. Notice that the call to the

quantum processor is isolated inside the run function.

VQE. In the VQE algorithm [20], one often assumes that � is a tensor product of Pauli matrices

(which we do not define here for simplicity) and then one can use Hamiltonian averaging, i.e., we

produce a unitary operator *� that we apply to |k〉, with the following property: if we measure

the first bit of *� |k〉 and denote by ?0 (resp. ?1) the probability of the outcome being 0 (resp. 1),

then 〈k | � |k〉 = ?0 − ?1. We follow the same approach for our implementation which is available

in the file VQE.idr (we do not provide an excerpt here for lack of space).

This unitary*� is built by the function encodingUnitaryand the process to compute 〈k |� |k〉
is given in the function computeEnergyPauli. This function runs the quantum process nSamples

times and returns the difference between the two possible outcomes (0 and 1).

More generally, any Hamiltonian � can be written as a linear combination of tensor products

of Pauli matrices, � =

∑

8 U8�8 , and one can compute 〈k | � |k〉 by computing each term 〈k | �8 |k〉
independently, see the code for details.

6 RELATED WORK AND FUTUREWORK

In this section we compare Qimaera with other existing quantum programming languages that

are implemented in software. We omit comparisons with quantum type systems that do not have

a software implementation, mostly for brevity, but also because we do not feel such comparisons

are fair towards the type systems, which are usually much smaller and with fewer features (but

also more formal).

The QWIRE language [18, 21] is a quantum circuit language that is embedded in the Coq proof

assistant [26]. In that sense, QWIRE is similar to Qimaera, because it also has access to dependent

types (provided by Coq), and because it also clearly separates the quantum and classical modes
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QAOA_Unitary : {n : Nat} -> (betas : Vect p Double) -> (gammas : Vect p Double) ->

(graph: Graph n) -> Unitary n

classicalOptimisation : {p : Nat} -> (graph : Graph n) ->

(previous_info : Vect k (Vect p Double , Vect p Double , Cut n)) ->

IO (Vect p Double , Vect p Double)

QAOA ' : QuantumOp t =>

{n : Nat} ->

(k : Nat) -> (p : Nat) -> (graph : Graph n) ->

IO (Vect k (Vect p Double , Vect p Double , Cut n))

QAOA ' 0 p graph = pure []

QAOA ' (S k) p graph = do

previous_info <- QAOA ' {t} k p graph

(betas , gammas) <- classicalOptimisation graph previous_info

let circuit = QAOA_Unitary betas gammas graph

cut <- run (do

qs <- newQubits {t} n

qs <- applyUnitary qs circuit

measureAll qs

)

pure $ (betas , gammas , cut) :: previous_info

QAOA : QuantumOp t => {n : Nat} -> (k : Nat) -> (p : Nat) -> Graph n -> IO (Cut n)

QAOA k p graph = do

res <- QAOA ' {t} k p graph

let cuts = map (\(_, _, cut) => cut) res

let (cut ,size) = bestCut graph cuts

pure cut

Fig. 9. Qimaera implementation (excerpt) for the QAOA algorithm solving the MAXCUT problem (file:

QAOA.idr).

of programming. However, Idris 2 is not a proof assistant (it is a programming language), it does

not have access to an interactive proof system and it is not suitable for formally verifying complex

properties of quantum programs. Indeed, this is what QWIRE excels at. The focus of Qimaera is

on programming and Idris 2 has better support for classical, quantum and effectful programming

features. In particular, since Coq lacks general recursion, the RUS algorithm from §4.2 cannot be

expressed in QWIRE and the same is true for many other classical and quantum algorithms that

make use of general recursion or probabilistic effects.

Silq [6] is a recently described standalone quantum programming language which is also type-

safe (like Qimaera) and whose main notable feature is automatic uncomputation of temporary val-

ues. We currently partially support this feature, because we have clearly identified and separated

the reversible fragment of quantum computation (see the Unitary type) and we can synthesise the

required adjoints by calling the adjoint function. We believe that it is possible to extend Qimaera

with full automatic uncomputation as well and we leave this for future work. Compared to Silq,

the main advantage of Qimaera is that Idris has much better support for classical programming

features and so we believe that Qimaera is a better choice for variational quantum programming,

where the classical part of the algorithm is more complicated and difficult to program. In addition,

Silq does not support general recursion, so it cannot express quantum algorithms that rely on this

(e.g. the RUS algorithm from §4.2).
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The Quipper language [11] is a domain specific language (DSL) embedded in Haskell. Qimaera

is itself embedded in Idris 2 and clearly Idris 2 has been strongly inspired by Haskell, so the pro-

gramming styles in Qimaera and Quipper are similar. Quipper has an extensive library of useful

quantum functions and we have not implemented all of them in Qimaera yet. We believe that we

can implement most of them and we leave this for future work. The main advantage that Qimaera

has over Quipper is that Qimaera is type-safe, because it is implemented in Idris 2, which has de-

pendent types and linearity. Haskell does not support these features, and because of this, Quipper

cannot statically detect quantum programs that are physically inadmissible, whereas Qimaera can

do this, as we already demonstrated in this paper.

Another recent language includes Proto-Quipper-D [9] which is a type-safe circuit description

language. This language is based on a novel type systemwhich shows how linearity and dependent

types can be combined. A fundamental difference between Proto-Quipper-D and Qimaera is that

linearity is the default mode of operation in Proto-Quipper-D, whereas in Qimaera the default

mode is non-linear. The focus in Proto-Quipper-D is on circuit description and generation and

the language currently lacks what is commonly known as dynamic lifting, i.e., the language does

not support effectful quantummeasurements and probabilistic effects. Because of this it cannot be

used for variational quantum programming at present.

Other languages, include Google’s Cirq [27] (a set of python libraries), IBM’s Qiskit [1] (a set

of python libraries) and Microsoft’s Q♯ [25] (standalone). These languages offer a wide-range of

quantum functions and features, however, none of them are type-safe and so it is possible to write

erroneous quantum programs which are not detected at compile time. Qimaera does not have this

problem and this is indeed its main advantage over them, together with dependent types.
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