
Mixed Linear and Non-linear Recursive Types

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Michael Mislove and Bert Lindenhovius

ICFP’19
Berlin

21 August 2019

0 / 15

Linear Logic

• Introduced by Girard in 1987.

• Resource-sensitive logic.

• 30+ years of research.

• Very few linear languages that are convenient for programming.

1 / 15

Mixed Linear/Non-linear type systems

• Mixed linear/non-linear type systems have recently found applications in:
• concurrency (session types for π-calculus);
• quantum programming (substructural limitations imposed by quantum information);
• circuit description languages (dealing with wires of string diagrams);
• programming resource-sensitive data (file handlers, etc.).

• This talk: add recursive types to a mixed linear/non-linear type system in a way
that is convenient for programming.

• Very detailed categorical treatment:
• a new technique for solving recursive domain equations within CPO;
• coherence theorems;
• sound and adequate categorical models.

2 / 15

Long story short

• Syntax and operational semantics is mostly based on prior work1.
• Main difficulty is on the denotational and categorical side.
• How can we copy/discard non-linear recursive types implicitly?

• A list of file handlers should be linear – cannot copy/discard.
• A list of natural numbers should be non-linear – can copy/discard at will (and

implicitly).

• How do we design a linear/non-linear fixpoint calculus (LNL-FPC)?

1Rios and Selinger, QPL’17; Lindenhovius, Mislove and Zamdzhiev LICS’18
3 / 15

Syntax

Type variables X ,Y ,Z
Term variables x , y , z
Types A,B,C ::= X | A + B | A⊗ B | A(B | !A | µX .A
Non-linear types P,R ::= X | P + R | P ⊗ R | !A | µX .P
Type contexts Θ ::= X1,X2, . . . ,Xn

Term contexts Γ,Σ ::= x1 : A1, x2 : A2, . . . , xn : An

Terms m, n, p ::= x | leftA,Bm | rightA,Bm
| case m of {left x → n right y → p}
| 〈m, n〉 | let 〈x , y〉 = m in n | λxA.m | mn
| lift m | force m | foldµX .Am | unfold m

Values v ,w ::= x | leftA,Bv | rightA,Bv | 〈v ,w〉 | λxA.m
| lift m | foldµX .Av

Term Judgements Θ; Γ ` m : A

4 / 15

Operational Semantics

⇓
x ⇓ x

m ⇓ v

left m ⇓ left v

m ⇓ v

right m ⇓ right v

m ⇓ left v n[v/x] ⇓ w

case m of {left x → n | right y → p} ⇓ w

m ⇓ right v p[v/y] ⇓ w

case m of {left x → n | right y → p} ⇓ w

m ⇓ v n ⇓ w

〈m, n〉 ⇓ 〈v ,w〉
m ⇓ 〈v , v ′〉 n[v/x , v ′/y] ⇓ w

let 〈x , y〉 = m in n ⇓ w

⇓
λx .m ⇓ λx .m

m ⇓ λx .m′ n ⇓ v m′[v/x] ⇓ w

mn ⇓ w

⇓
lift m ⇓ lift m

m ⇓ lift m′ m′ ⇓ v

force m ⇓ v

m ⇓ v

fold m ⇓ fold v

m ⇓ fold v

unfold m ⇓ v
5 / 15

Term level recursion

In FPC, term recursion is induced by the isorecursive type structure. The same is true
for LNL-FPC.

Theorem
The term-level recursion operator from2 is now a derived rule. For a given term
Φ, z :!A ` m : A, define:

αz
m ≡ lift fold λx !µX .(!X(A).(λz !A.m)(lift (unfold force x)x)

rec z !A.m ≡ (unfold force αz
m)αz

m

2Lindenhovius, Mislove, Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A
Programming Language for String Diagrams. LICS 2018

6 / 15

Example: functorial function

rec fact. λ n.
case unfold n of

left u –> succ zero
right n’ –> mult(n, (force fact) n’)

Remark
The above program is written in the formal syntax without syntactic sugar. Note:
implicit rules for copying and discarding.

7 / 15

Models of Intuitionistic Linear Logic

A model of ILL3 is given by the following data:
• A cartesian closed category C with finite coproducts.

• A symmetric monoidal closed category L with finite coproducts.

• A symmetric monoidal adjunction:

C ` L

F

G

3Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL’94
8 / 15

Models of LNL-FPC

Definition
A CPO-LNL model is given by the following data:
1. A CPO-symmetric monoidal closed category (L,⊗,(, I), such that:

1a. L has an initial object 0, such that the initial morphisms e : 0→ A are embeddings;
1b. L has ω-colimits over embeddings;
1c. L has finite CPO-coproducts, where (−+−) : L× L→ L is the coproduct functor.

2. A CPO-symmetric monoidal adjunction CPO L
F

`

G
.

Theorem
In every CPO-LNL model L is CPO-algebraically compact.

9 / 15

Concrete Models

• Simplest non-trivial model: CPO CPO⊥!

(−)⊥

`

U
.

• A class of concrete models based on (enriched) presheaves into CPO⊥!. Concrete
models for:
• Quantum programming.
• Circuit description languages.
• String diagram description languages.
• Petri net description languages.

10 / 15

A new technique for solving recursive domain equations

Problem
How to interpret the non-linear recursive types within CPO.

Definition
Let T : A→ B be a CPO-functor between CPO-categories A and B. A morphism f in
A is called a pre-embedding with respect to T if Tf is an embedding in B.

Definition
Let CPOpe be the full-on-objects subcategory of CPO of all cpo’s with pre-embeddings
with respect to the functor F : CPO→ L.

Example
Every embedding in CPO is a pre-embedding, but not vice versa. The empty map
ι : ∅→ X is a pre-embedding (w.r.t to F in our model), but not an embedding.

11 / 15

Denotational Semantics (Types)

Main ideas:
• Provide a standard interpretation for all types JΘ ` AK : L|Θ|e → Le .
• A closed type is interpreted as JAK ∈ Ob(Le) = Ob(L).
• Provide a non-linear interpretation for non-linear types

LΘ ` PM : CPO|Θ|pe → CPOpe .
• A closed non-linear type admits an interpretation as

LPM ∈ Ob(CPOpe) = Ob(CPO).
• Theorem: For any closed non-linear type P, there exists an isomorphism

αP : JPK ∼= F LPM

which satisfies some important coherence conditions.

12 / 15

Copying and discarding

Definition
We define morphisms, called discarding (�), copying (4) and promotion (�):

�Ψ := JΨK α−→ F LΨM F1−→ F1 u−1
−−→ I ;

4Ψ := JΨK α−→ F LΨM
F 〈id,id〉−−−−→ F (LΨM " LΨM)

m−1
−−−→ F LΨM⊗ F LΨM α−1⊗α−1

−−−−−−→ JΨK⊗ JΨK;

�Ψ := JΨK α−→ F LΨM Fη−−→ !F LΨM !α−1
−−−→ !JΨK,

where Ψ is a closed non-linear type or non-linear term context.

Proposition
The triple

(
JΨK,4Ψ, �Ψ

)
forms a cocommutative comonoid in L.

13 / 15

Denotational Semantics (Terms)

• A term Γ ` m : A is interpreted as a morphism JΓ ` m : AK : JΓK→ JAK in L in the
standard way.
• The interpretation of a non-linear value JΦ ` v : PK commutes with the

substructural operations of ILL (shown by providing a non-linear interpretation
LΦ ` v : PM within CPO).
• Soundness: If m ⇓ v , then JmK = JvK.
• Adequacy: For models that satisfy some additional axioms, the following is true:

for any · ` m : P with P non-linear, then m ⇓ iff JmK 6=⊥ .

14 / 15

Conclusion and Future Work

• Introduced LNL-FPC: the linear/non-linear fixpoint calculus;

• Implicit weakening and contraction rules (copying and deletion of non-linear
variables);

• New results about parameterised initial algebras;

• New technique for solving recursive domain equations in CPO;

• Detailed semantic treatment of mixed linear/non-linear recursive types;

• Sound and adequate models;

• How to implicitly deal with lambda abstractions?

15 / 15

Thank you for your attention!

15 / 15

