Mixed Linear and Non-linear Recursive Types

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Michael Mislove and Bert Lindenhovius

ICFP'19 Berlin 21 August 2019

- Introduced by Girard in 1987.
- Resource-sensitive logic.
- 30+ years of research.
- Very few linear languages that are convenient for programming.

Mixed Linear/Non-linear type systems

- Mixed linear/non-linear type systems have recently found applications in:
 - concurrency (session types for π -calculus);
 - quantum programming (substructural limitations imposed by quantum information);
 - circuit description languages (dealing with wires of string diagrams);
 - programming resource-sensitive data (file handlers, etc.).
- This talk: add recursive types to a mixed linear/non-linear type system in a way that is convenient for programming.
- Very detailed categorical treatment:
 - a new technique for solving recursive domain equations within CPO;
 - coherence theorems;
 - sound and adequate categorical models.

Long story short

- Syntax and operational semantics is mostly based on prior work¹.
- Main difficulty is on the denotational and categorical side.
- How can we copy/discard non-linear recursive types *implicitly*?
 - A list of file handlers should be *linear* cannot copy/discard.
 - A list of natural numbers should be *non-linear* can copy/discard at will (and implicitly).
- How do we design a linear/non-linear fixpoint calculus (LNL-FPC)?

¹Rios and Selinger, QPL'17; Lindenhovius, Mislove and Zamdzhiev LICS'18

Syntax

Type variables	X, Y, Z		
Term variables	x, y, z		
Types	A, B, C	::=	$X \mid A + B \mid A \otimes B \mid A \multimap B \mid !A \mid \mu X.A$
Non-linear types	P, R	::=	$X \mid P + R \mid P \otimes R \mid !A \mid \mu X.P$
Type contexts	Θ	::=	X_1, X_2, \ldots, X_n
Term contexts	Γ, Σ	::=	$x_1: A_1, x_2: A_2, \ldots, x_n: A_n$
Terms	m, n, p	::=	$x \mid left_{A,B}m \mid right_{A,B}m$
			$ case m of \{ left x o n right y o p \}$
			$ \langle m,n\rangle $ let $\langle x,y\rangle = m$ in $n \lambda x^A.m mn$
			$ \text{ lift } m \text{ force } m \text{ fold}_{\mu X.A} m \text{ unfold } m$
Values	v, w	::=	$x \mid \text{left}_{A,B}v \mid \text{right}_{A,B}v \mid \langle v, w \rangle \mid \lambda x^A.m$
			lift $m \mid \text{fold}_{\mu X,A} v$
Term Judgements	Θ ; $\Gamma \vdash m$: A	

Operational Semantics

	$\overline{x \Downarrow x}$	$\frac{m \Downarrow v}{\text{left } m \Downarrow \text{left } v}$	right <i>m</i>	$\begin{array}{c} \Downarrow v \\ \Downarrow \text{ right } v \end{array}$	
$\frac{m \Downarrow \text{left}}{\text{case } m \text{ of } \{\text{left } x\}}$	$\frac{\Downarrow w}{v \to p} \frac{\Downarrow w}{w}$	$\frac{m \Downarrow \text{right } v p[v/y] \Downarrow w}{\text{case } m \text{ of } \{\text{left } x \to n \mid \text{right } v \to p\} \Downarrow w}$			
	$\frac{m \Downarrow v n}{\langle m, n \rangle \Downarrow \langle v}$	$\frac{\Downarrow w}{, w\rangle} \qquad \frac{m \Downarrow \langle v \\ \text{let} \end{cases}$	$\langle v, v' \rangle = n[v/v]$ t $\langle x, y \rangle = m$ i	$[x, v'/y] \Downarrow v$ in $n \Downarrow w$	<u>v</u>
	$\lambda x.m \Downarrow \lambda x.m$	$\frac{m \Downarrow \lambda x.m}{m}$	′ n ↓ v mn ↓ w	$m'[v/x] \Downarrow$	w
$\boxed{lift\ m\Downarrow lift\ m}$	$\frac{m \Downarrow lift}{for}$	$\frac{m' m' \Downarrow v}{\operatorname{ce} m \Downarrow v}$	$\frac{m\Downarrow}{\texttt{fold}\ m\Downarrow}$	v fold v	$\frac{m \Downarrow \texttt{fold } v}{\texttt{unfold } m \Downarrow v}$

Term level recursion

In FPC, term recursion is induced by the isorecursive type structure. The same is true for LNL-FPC.

Theorem

The term-level recursion operator from² is now a derived rule. For a given term Φ , z :! $A \vdash m$: A, define:

 $\alpha_m^z \equiv \text{lift fold } \lambda x^{!\mu X.(!X \multimap A)}.(\lambda z^{!A}.m)(\text{lift (unfold force } x)x)$ rec $z^{!A}.m \equiv (\text{unfold force } \alpha_m^z)\alpha_m^z$

²Lindenhovius, Mislove, Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. LICS 2018

Example: functorial function

```
rec fact. λ n.
case unfold n of
   left u -> succ zero
   right n' -> mult(n, (force fact) n')
```

Remark

The above program is written in the formal syntax without syntactic sugar. Note: implicit rules for copying and discarding.

Models of Intuitionistic Linear Logic

A model of ILL^3 is given by the following data:

- A cartesian closed category **C** with finite coproducts.
- A symmetric monoidal closed category L with finite coproducts.
- A symmetric monoidal adjunction:

³Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94

Models of LNL-FPC

Definition

A CPO-LNL model is given by the following data:

- 1. A CPO-symmetric monoidal closed category (L, \otimes , $-\circ$, I), such that:
 - 1a. L has an initial object 0, such that the initial morphisms $e: 0 \rightarrow A$ are embeddings;
 - 1b. L has ω -colimits over embeddings;
 - 1c. L has finite CPO-coproducts, where $(-+-): L \times L \rightarrow L$ is the coproduct functor.
- 2. A CPO-symmetric monoidal adjunction $CPO \xleftarrow{F}{\swarrow} L$.

Theorem

In every CPO-LNL model L is CPO-algebraically compact.

Concrete Models

- Simplest non-trivial model: $CPO \xrightarrow{(-)_{\perp}}_{\downarrow I} CPO_{\perp !}$.
- A *class* of concrete models based on (enriched) presheaves into **CPO**₁. Concrete models for:
 - Quantum programming.
 - Circuit description languages.
 - String diagram description languages.
 - Petri net description languages.

A new technique for solving recursive domain equations

Problem

How to interpret the non-linear recursive types within CPO.

Definition

Let $T : A \to B$ be a CPO-functor between CPO-categories A and B. A morphism f in A is called a *pre-embedding with respect to* T if Tf is an embedding in B.

Definition

Let CPO_{pe} be the full-on-objects subcategory of CPO of all cpo's with pre-embeddings with respect to the functor $F : CPO \rightarrow L$.

Example

Every embedding in **CPO** is a pre-embedding, but not vice versa. The empty map $\iota : \emptyset \to X$ is a pre-embedding (w.r.t to F in our model), but not an embedding.

Denotational Semantics (Types)

Main ideas:

- Provide a standard interpretation for all types $\llbracket \Theta \vdash A \rrbracket$: $\mathsf{L}_{\mathbf{e}}^{|\Theta|} \to \mathsf{L}_{e}$.
- A closed type is interpreted as $\llbracket A \rrbracket \in Ob(L_e) = Ob(L)$.
- Provide a non-linear interpretation for non-linear types $(\Theta \vdash P) : \mathbf{CPO}_{pe}^{|\Theta|} \to \mathbf{CPO}_{pe}.$
- A closed non-linear type admits an interpretation as (|P|) ∈ Ob(CPO_{pe}) = Ob(CPO).
- Theorem: For any closed non-linear type P, there exists an isomorphism

$$\alpha^{P}: \llbracket P \rrbracket \cong F (\!\! P)\!\! \}$$

which satisfies some important coherence conditions.

Copying and discarding

Definition

We define morphisms, called discarding (\diamond), copying (\triangle) and promotion (\Box):

where Ψ is a closed non-linear type or non-linear term context.

Proposition

The triple $(\llbracket \Psi \rrbracket, \bigtriangleup^{\Psi}, \diamond^{\Psi})$ forms a cocommutative comonoid in L.

Denotational Semantics (Terms)

- A term Γ ⊢ m : A is interpreted as a morphism [[Γ ⊢ m : A]] : [[Γ]] → [[A]] in L in the standard way.
- The interpretation of a non-linear value [[Φ ⊢ v : P]] commutes with the substructural operations of ILL (shown by providing a non-linear interpretation ([Φ ⊢ v : P]) within CPO).
- Soundness: If $m \Downarrow v$, then $\llbracket m \rrbracket = \llbracket v \rrbracket$.
- Adequacy: For models that satisfy some additional axioms, the following is true: for any · ⊢ m : P with P non-linear, then m ↓ iff [[m]] ≠⊥.

Conclusion and Future Work

- Introduced LNL-FPC: the linear/non-linear fixpoint calculus;
- Implicit weakening and contraction rules (copying and deletion of non-linear variables);
- New results about parameterised initial algebras;
- New technique for solving recursive domain equations in CPO;
- Detailed semantic treatment of mixed linear/non-linear recursive types;
- Sound and adequate models;
- How to implicitly deal with lambda abstractions?

Thank you for your attention!