
Inductive Datatypes for Quantum Programming

Romain Péchoux1, Simon Perdrix1, Mathys Rennela2 and Vladimir Zamdzhiev1

1Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
2 Leiden Inst. Advanced Computer Sciences, Universiteit Leiden, Leiden, The Netherlands

13 May 2019

0 / 17

Introduction

• Inductive datatypes are an important programming paradigm.
• Data structures such as natural numbers, lists, trees, etc.
• Manipulate variable-sized data.

• We consider the problem of adding inductive datatypes to a quantum
programming language.
• Some of the main challenges in designing a categorical model for the language

stem from substructural limitations imposed by quantum mechanics.
• Can quantum datatypes be discarded? What quantum operations are discardable?
• How do we copy classical datatypes? Can we always duplicate the classical

computational data?

• This talk describes work-in-progress.

1 / 17

QPL - a Quantum Programming Language

• As a basis for our development, we describe a quantum programming language
based on the language QPL of Selinger.
• The language is equipped with a type system which guarantees no runtime errors

can occur:
• The type system ensures qubits cannot be copied.
• The type system ensures that a CNOT gate cannot be applied with control and

target the same qubit, etc.

• QPL is not a higher-order language: it has procedures, but does not have lambda
abstractions.
• We extend QPL with inductive datatypes. This allows us to model natural

numbers, lists of qubits, lists of natural numbers, etc.
• We extend QPL with a copy operation on classical types.
• We extend QPL with a discarding operation defined on all types.

2 / 17

Syntax

• The syntax (excerpt) of our language is presented below. The formation rules are
omitted.

Type Var. X ,Y ,Z
Term Var. x , q, b, u
Procedure Var. f , g
Types A,B ::= X | I | qbit | A + B | A⊗ B | µX .A
Classical Types P,R ::= X | I | P + R | P ⊗ R | µX .P
Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An

Procedure cont. Π ::= f1 : A1 → B1, . . . , fn : An → Bn

3 / 17

Syntax (contd.)

Terms M,N ::= new unit u | new qbit q | discard x | y = copy x
q1, . . . , qn ∗ = U | M;N | skip |
b = measure q | while b do M |
x = leftA,BM | x = rightA,BM |
case y of {left x1 → M | right x2 → N}
x = (x1, x2) | (x1, x2) = x |
y = fold x | y = unfold x |
proc f x : A→ y : B {M} in N | y = f (x)

• A term judgement is of the form Π ` 〈Γ〉 P 〈Σ〉, where all types are closed and all
contexts are well-formed. It states that the term is well-formed in procedure
context Π, given input variables 〈Γ〉 and output variables 〈Σ〉.
• A program is a term P , such that · ` 〈·〉 P 〈Γ〉, for some (unique) Γ.

4 / 17

Some syntactic sugar

• The type of bits is defined as bit := I + I .
• The program (new unit u; b = leftI ,I u) creates a bit b which corresponds to

false.
• The program (new unit u; b = rightI ,I u) creates a bit b which corresponds to

true.
• if b then P else Q can also be defined using the case term.
• The type of natural numbers is defined as Nat := µX .I + X .
• The program (new unit u; z = leftI ,Nat u; zero = foldNatz) creates a variable zero

which corresponds to 0.
• The type of lists of qubits is defined as QList = µX .I + qbit⊗ X

5 / 17

Example Program - toss a coin until tail shows up
proc cointoss u:I --> b:bit {

discard u;
new qbit q;
q*=H;
b = measure q

} in
new unit u;
b = cointoss(u);
while b do {

new unit u;
b = cointoss(u)

}

• This program is written using the formal syntax, but it can be improved in an
actual implementation of the language using syntactic sugar.

6 / 17

Operational Semantics

• Operational semantics is a formal specification which describes how a program
should be executed in a mathematically precise way.
• A configuration is a tuple (M,V ,Ω, ρ), where:

• M is a well-formed term Π ` 〈Γ〉 M 〈Σ〉.
• V is a control value context. It formalizes the control structure. Each input variable

of P is assigned a control value, e.g. V = {x = zero, y = cons(one, nil)}.
• Ω is a procedure store. It keeps track of the defined procedures by mapping

procedure variables to their procedure bodies (which are terms).
• ρ is the (possibly not normalized) density matrix computed so far.
• This data is subject to additional well-formedness conditions (omitted).

7 / 17

Operational Semantics (contd.)

• Program execution is modelled as a nondeterministic reduction relation on
configurations (M,V ,Ω, ρ) ⇓ (M ′,V ′,Ω′, ρ′).

• The only source of nondeterminism comes from quantum measurements. The
probability of the measurement outcome is encoded in ρ′ and may be recovered
from it.
• The reduction relation may equivalently be seen as a probabilistic reduction

relation.

8 / 17

Denotational Semantics

• Denotational semantics is a mathematical interpretation of programs.
• Types are interpreted as W*-algebras.

• W*-algebras were introduced by von Neumann, to aid his study of QM.
• Example: The type of natural numbers is interpreted as

⊕
i<ω C.

• Programs are interpreted as completely positive subunital maps.
• We identify the abstract categorical structure of these operator algebras which

allows us to use techniques from theoretical computer science.

9 / 17

Categorical Model

• We interpret the entire language within the category C := (W∗NCPSU)op.
• The objects are (possibly infinite-dimensional) W∗-algebras.
• The morphisms are normal completely-positive subunital maps.

• Our categorical model (and language) can largely be understood even if one does
not have knowledge about infinite-dimensional quantum mechanics.
• There exists an adjunction F a G : C→ Set, which is crucial for the description of

the copy operation.

10 / 17

Interpretation of Types

• Every open type X ` A is interpreted as an endofunctor JX ` AK : C→ C.
• Every closed type A is interpreted as an object JAK ∈ Ob(C).
• Inductive datatypes are interpreted by constructing initial algebras within C.

• The existence of these initial algebras is technically involved.

11 / 17

A Categorical View on Causality

• The "no deleting" theorem of quantum mechanics shows that one cannot discard
arbitrary quantum states.
• In mixed-state quantum mechanics, it is possible to discard certain states and

operations.
• Discardable operations are called causal.
• We show the slice category Cc := C/I has sufficient structure to interpret the

types within it.
• The objects are pairs (A, �A : A→ I), where �A is a discarding map.
• The morphisms are maps f : A→ B, s.t. �B ◦ f = �A, i.e. causal maps.

• We present a non-standard type interpretation ‖A‖ ∈ Ob(C/I) and show the
computational data is causal.

12 / 17

Copying of Classical Information

• To model copying of classical (nonlinear) information, we do not use linear logic
based approaches that rely on a !-modality.
• Instead, for every classical type X ` P we present a classical interpretation

LX ` PM : Set→ Set which we show satisfies F ◦ LX ` PM ∼= JX ` PK ◦ F .
• For closed types we get an isomorphism F LPM ∼= JPK.
• This isomorphism now easily allows us to define a cocommutative comonoid

structure in a canonical way by using the cartesian structure of Set and the axioms
of symmetric monoidal adjunctions.

13 / 17

Relationship between the Type Interpretations

JΘ ` PK

F×|Θ|

Set C

Set|Θ|

LΘ ` PM

F

C|Θ|

∼= ‖Θ ` A‖

L×|Θ|

C Cc

C|Θ|

JΘ ` AK

U

C|Θ|c

14 / 17

Interpretation of Terms and Configurations

• Most of the difficulty is in defining the interpretation of types and the
substructural operations.
• Terms are interpreted as Scott-continuous functions

JΠ ` 〈Γ〉 M 〈Σ〉K : JΠK→ C(JΓK, JΣK).

• Configurations are interpreted as states J(M,V ,Ω, ρ)K : I → JΣK.

15 / 17

Soundness

• We will prove the denotational semantics is sound, i.e:
• The denotational interpretation is invariant under program execution:

J(M,V ,Ω, ρ)K =
∑

(M,V ,Ω,ρ)⇓(Mi ,Vi ,Ωi ,ρi)

J(Mi ,Vi ,Ωi , ρi)K

16 / 17

Conclusion and Future Work

• We extended a quantum programming language with inductive datatypes.
• We described the causal structure of all types (including inductive ones) via a

general categorical construction.
• We described the comonoid structure of all classical types using the categorical

structure of models of ILL.
• Have to:

• Finish the soundness proof.
• Establish computational adequacy.

17 / 17

