Inductive Datatypes for Quantum Programming

Romain Péchoux!, Simon Perdrix!, Mathys Rennela? and Vladimir Zamdzhiev!

1Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
2 Leiden Inst. Advanced Computer Sciences, Universiteit Leiden, Leiden, The Netherlands

13 May 2019

7 k. Universiteit
&(Ve /’a Leiden

INVENTEURS DU MONDE NUMERIOUE

UNIVERSITE
DE LORRAINE

0/17

Introduction

Inductive datatypes are an important programming paradigm.

® Data structures such as natural numbers, lists, trees, etc.

® Manipulate variable-sized data.
We consider the problem of adding inductive datatypes to a quantum
programming language.
Some of the main challenges in designing a categorical model for the language
stem from substructural limitations imposed by quantum mechanics.

® Can quantum datatypes be discarded? What quantum operations are discardable?
® How do we copy classical datatypes? Can we always duplicate the classical
computational data?

This talk describes work-in-progress.

1/17

QPL - a Quantum Programming Language

As a basis for our development, we describe a quantum programming language
based on the language QPL of Selinger.

The language is equipped with a type system which guarantees no runtime errors
can occur:

® The type system ensures qubits cannot be copied.
® The type system ensures that a CNOT gate cannot be applied with control and
target the same qubit, etc.

QPL is not a higher-order language: it has procedures, but does not have lambda
abstractions.

We extend QPL with inductive datatypes. This allows us to model natural
numbers, lists of qubits, lists of natural numbers, etc.

We extend QPL with a copy operation on classical types.

We extend QPL with a discarding operation defined on all types.

2/17

Syntax

® The syntax (excerpt) of our language is presented below. The formation rules are
omitted.

Type Var. X, Y, Z

Term Var. x,q,b,u

Procedure Var. f.g

Types A B = X|/|qgbit| A+ B|A®B | uX.A
Classical Types P,R = X|I|P+R|P®R|uX.P
Variable contexts I, X = x3:A1L, ..., X A

Procedure cont. I = f:AL—>Bi,....f,: A, — B,

3/17

Syntax (contd.)

Terms M,N := new unit u | new gbit g | discard x | y = copy x
qi,.--,qnx=U]| M;N | skip |
b = measure q | while b do M |
x = lefty gM | x = right, gM |
case y of {left x; — M | right x, — N}
x = (x1,%) | (x1, %) = x |
y = fold x | y = unfold x |
proc f x :A—=y:B{M}in N|y="f(x)

e A term judgement is of the form N+ (I') P (¥X), where all types are closed and all
contexts are well-formed. It states that the term is well-formed in procedure
context [1, given input variables (I') and output variables (¥).

® A program is a term P, such that -+ (-) P ('), for some (unique) I

4/17

Some syntactic sugar

The type of bits is defined as bit := [+ .

The program (new unit u; b = left;; u) creates a bit b which corresponds to
false.

The program (new unit u; b = right, ; u) creates a bit b which corresponds to
true.

if b then P else Q can also be defined using the case term.
The type of natural numbers is defined as Nat := uX./ + X.

The program (new unit u; z = left) y,¢ u; zero = foldp,:z) creates a variable zero
which corresponds to 0.

The type of lists of qubits is defined as QList = uX.l + gbit ® X

5/17

Example Program - toss a coin until tail shows up

proc cointoss u:I --> b:bit {
discard u;
new gbit q;
q*=H;
b = measure q
} in
new unit u;
b = cointoss(u);
while b do {
new unit u;
b = cointoss(u)

® This program is written using the formal syntax, but it can be improved in an
actual implementation of the language using syntactic sugar.
6/17

Operational Semantics

e Qperational semantics is a formal specification which describes how a program
should be executed in a mathematically precise way.
® A configuration is a tuple (M, V,Q, p), where:
® M is a well-formed term M= (I') M (X).
® V is a control value context. It formalizes the control structure. Each input variable
of P is assigned a control value, e.g. V = {x = zero,y = cons(one, nil)}.
® Qs a procedure store. It keeps track of the defined procedures by mapping
procedure variables to their procedure bodies (which are terms).
p is the (possibly not normalized) density matrix computed so far.
This data is subject to additional well-formedness conditions (omitted).

7/17

Operational Semantics (contd.)

® Program execution is modelled as a nondeterministic reduction relation on
configurations (M, V,Q, p) | (M, V' Q. p).

® The only source of nondeterminism comes from quantum measurements. The
probability of the measurement outcome is encoded in p’ and may be recovered
from it.

® The reduction relation may equivalently be seen as a probabilistic reduction
relation.

8/17

Denotational Semantics

Denotational semantics is a mathematical interpretation of programs.

Types are interpreted as W*-algebras.

® \W*._algebras were introduced by von Neumann, to aid his study of QM.
® Example: The type of natural numbers is interpreted as), _, C.

Programs are interpreted as completely positive subunital maps.

We identify the abstract categorical structure of these operator algebras which
allows us to use techniques from theoretical computer science.

9/17

Categorical Model

® We interpret the entire language within the category C := (Wycpsy)®P.
® The objects are (possibly infinite-dimensional) W*-algebras.
® The morphisms are normal completely-positive subunital maps.

® Our categorical model (and language) can largely be understood even if one does
not have knowledge about infinite-dimensional quantum mechanics.

® There exists an adjunction F 4 G : C — Set, which is crucial for the description of
the copy operation.

10/17

Interpretation of Types

® Every open type X = A is interpreted as an endofunctor [X - A] : C — C.

® Every closed type A is interpreted as an object [A] € Ob(C).
® Inductive datatypes are interpreted by constructing initial algebras within C.
® The existence of these initial algebras is technically involved.

11/17

A Categorical View on Causality

The "no deleting" theorem of quantum mechanics shows that one cannot discard
arbitrary quantum states.

In mixed-state quantum mechanics, it is possible to discard certain states and
operations.

Discardable operations are called causal.
We show the slice category C. := C/I has sufficient structure to interpret the
types within it.

® The objects are pairs (A, 04 : A — 1), where o4 is a discarding map.

® The morphisms are maps f : A — B, s.t. ogof = o4, i.e. causal maps.
We present a non-standard type interpretation ||A|| € Ob(C//) and show the
computational data is causal.

12/17

Copying of Classical Information

To model copying of classical (nonlinear) information, we do not use linear logic
based approaches that rely on a I-modality.

Instead, for every classical type X = P we present a classical interpretation
(X - P) : Set — Set which we show satisfies F o (X - P) =2 [XF P]o F.

For closed types we get an isomorphism F(P) = [P].

This isomorphism now easily allows us to define a cocommutative comonoid
structure in a canonical way by using the cartesian structure of Set and the axioms
of symmetric monoidal adjunctions.

13/17

Relationship between the Type Interpretations

© ©
setlel — L, el clol —LL o
©r P[)l ~ h[{@k P] [[@I—A]]h ‘HGI—AH
Set —————— C Ce——Cc

F U

14/17

Interpretation of Terms and Configurations

e Most of the difficulty is in defining the interpretation of types and the
substructural operations.

® Terms are interpreted as Scott-continuous functions
M= M &) - [N] = (T, [%])-
¢ Configurations are interpreted as states [(M, V,Q,p)] : | — [X].

15/17

Soundness

® We will prove the denotational semantics is sound, i.e:
® The denotational interpretation is invariant under program execution:

[(M,V,Q,p)] = > [(M;, Vi, Qi, pi)]
(M,V,Q,P)U«(M;,V;,th,‘)

16 /17

Conclusion and Future Work

We extended a quantum programming language with inductive datatypes.

We described the causal structure of all types (including inductive ones) via a
general categorical construction.

We described the comonoid structure of all classical types using the categorical
structure of models of ILL.

Have to:

® Finish the soundness proof.
® Establish computational adequacy.

17/17

