
Quantum Programming with Inductive Datatypes:
Causality and Affine Type Theory

Romain Péchoux1, Simon Perdrix1, Mathys Rennela2 and Vladimir Zamdzhiev1

1Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
2 Leiden Inst. Advanced Computer Sciences, Universiteit Leiden, Leiden, The Netherlands

SoftQPro Meeting
6 June 2019

0 / 22

Introduction

• Inductive datatypes are an important programming concept.
• No detailed treatment of inductive datatypes for quantum programming so far.
• Most type systems for quantum programming are linear. We show that affine type

systems are more appropriate.
• Some of the main challenges in designing a categorical model for the language

stem from substructural limitations imposed by quantum mechanics.
• Can (infinite-dimensional) quantum datatypes be discarded?
• How do we copy (infinite-dimensional) classical datatypes?

• Our model is physically natural (von Neumann algebras) and all our constructions
are consistent with the laws of quantum mechanics.

1 / 22

Outline : Inductive Datatypes

• Syntactically, everything is very straightforward.
• Operationally, the small-step semantics can be described using finite-dimensional

superoperators together with classical control structures.
• Denotationally, we have to move away from finite-dimensional quantum

computing:
• E.g. the recursive domain equation X ∼= C⊕X cannot be solved in finite-dimensions.

• Naturally, we use (infinite-dimensional) W*-algebras (aka von Neumann algebras),
which were introduced by von Neumann to aid his study of quantum mechanics.

2 / 22

Outline : Causality and Linear vs Affine Type Systems

• Linear type system : only non-linear variables may be copied or discarded.
• Affine type system : only non-linear variables may be copied; all variables may be

discarded.
• Syntactically, all types have an elimination rule in quantum programming.
• Operationally, all computational data may be discarded by a mix of partial trace

and classical discarding.
• Denotationally, we can construct discarding maps at all types (quantum and

classical) and prove the interpretation of the computational data is causal.
• This is difficult. We present a novel technique for causality analysis based on a

non-standard type interpretation. General abstract construction, also works for
non-quantum categories.

• Our treatment shows the "no deletion" theorem of QM is irrelevant for quantum
programming. We work entirely within W*-algebras, so no violation of QM.

3 / 22

QPL - a Quantum Programming Language

• As a basis for our development, we describe a quantum programming language
based on the language QPL of Selinger.
• The language is equipped with a type system which guarantees no runtime errors

can occur.
• QPL is not a higher-order language: it has procedures, but does not have lambda

abstractions.
• We extend QPL with :

• Inductive datatypes.
• Copy operation on classical types.
• Discarding operation on all types.

4 / 22

Syntax

• The syntax (excerpt) of our language is presented below. The formation rules are
omitted. Notice there is no ! modality.

Type Var. X ,Y ,Z
Term Var. x , q, b, u
Procedure Var. f , g
Types A,B ::= X | I | qbit | A + B | A⊗ B | µX .A
Classical Types P,R ::= X | I | P + R | P ⊗ R | µX .P
Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An

Procedure cont. Π ::= f1 : A1 → B1, . . . , fn : An → Bn

5 / 22

Syntax (contd.)

Terms M,N ::= new unit u | new qbit q | discard x | y = copy x
q1, . . . , qn ∗ = U | M;N | skip |
b = measure q | while b do M |
x = leftA,BM | x = rightA,BM |
case y of {left x1 → M | right x2 → N}
x = (x1, x2) | (x1, x2) = x |
y = fold x | y = unfold x |
proc f x : A→ y : B {M} | y = f (x)

• A term judgement is of the form Π ` 〈Γ〉 P 〈Σ〉, where all types are closed and all
contexts are well-formed. It states that the term is well-formed in procedure
context Π, given input variables 〈Γ〉 and output variables 〈Σ〉.
• A program is a term P , such that · ` 〈·〉 P 〈Γ〉, for some (unique) Γ.

6 / 22

Syntax : qubits

The type of bits is (canonically) defined to be bit := I + I .

(qbit)
Π ` 〈Γ〉 new qbit q 〈Γ, q : qbit〉

(measure)
Π ` 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉

S is a unitary of arity n
(unitary)

Π ` 〈Γ, q1 : qbit, . . . , qn : qbit〉 q1, . . . , qn ∗= S 〈Γ, q1 : qbit, . . . , qn : qbit〉

7 / 22

Syntax : copying

P is a classical type
(copy)

Π ` 〈Γ, x : P〉 y = copy x 〈Γ, x : P, y : P〉

8 / 22

Syntax : discarding (affine vs linear)

• If we wish to have a linear type system:

(unit)
Π ` 〈Γ〉 new unit u 〈Γ, u : I 〉

(discard)
Π ` 〈Γ, x : I 〉 discard x 〈Γ〉

• If we wish to have an affine type system:

(unit)
Π ` 〈Γ〉 new unit u 〈Γ, u : I 〉

(discard)
Π ` 〈Γ, x : A〉 discard x 〈Γ〉

• Since all types have an elimination rule, an affine type system is obviously more
convenient.

9 / 22

Example Program - toss a coin until tail shows up

proc cointoss {
new qbit q;
q*=H;
b = measure q;
return b

};
b = cointoss;
while b do {

b = cointoss
}

• This program is written using some (obvious) syntactic sugar.
• It terminates with probability 1, but there is no upper bound on the number of

loops it will do.
10 / 22

Operational Semantics

• Operational semantics is a formal specification which describes how a program
should be executed in a mathematically precise way.
• A configuration is a tuple (M,V ,Ω, ρ), where:

• M is a well-formed term Π ` 〈Γ〉 M 〈Σ〉.
• V is a control value context. It formalizes the control structure. Each input variable

of M is assigned a control value, e.g. V = {x = zero, y = cons(one, nil)}.
• Ω is a procedure store. It keeps track of the defined procedures by mapping

procedure variables to their procedure bodies (which are terms).
• ρ is the (possibly not normalized) density matrix computed so far.
• This data is subject to additional well-formedness conditions (omitted).

11 / 22

Operational Semantics (contd.)

• Program execution is (formally) modelled as a nondeterministic reduction relation
on configurations (M,V ,Ω, ρ) (M ′,V ′,Ω′, ρ′).

• However, the reduction relation may equivalently be seen as a probabilistic
reduction relation, because the probability of the reduction is encoded in ρ′ and
may be recovered from it.
• The only source of probabilistic behaviour is given by quantum measurements.

12 / 22

Denotational Semantics

• Types are interpreted as W*-algebras.
• W*-algebras were introduced by von Neumann, to aid his study of QM.
• Example: The type of natural numbers is interpreted as

⊕ω
i=0 C.

• Programs are interpreted as normal completely positive subunital maps.
• We identify the abstract categorical structure of these operator algebras which

allows us to use categorical techniques from denotational semantics.

13 / 22

Categorical Model

• We interpret the entire language within the category C := (W∗NCPSU)op.
• The objects are (possibly infinite-dimensional) W∗-algebras.
• The morphisms are normal completely-positive subunital maps.

• Our categorical model (and language) can largely be understood even if one does
not have knowledge about infinite-dimensional quantum mechanics.
• There exists an adjunction F a G : C→ Set, which is crucial for the description of

the copy operation.

14 / 22

Interpretation of Types

• Every open type X ` A is interpreted as an endofunctor JX ` AK : C→ C.
• Every closed type A is interpreted as an object JAK ∈ Ob(C).
• Inductive datatypes are interpreted by constructing initial algebras within C.

• The existence of these initial algebras is technically involved.

15 / 22

Copying of Classical Information

• We do not use linear logic based approaches that rely on a !-modality.
• Instead, for every classical type X ` P we present a classical interpretation

LX ` PM : Set→ Set which we show satisfies F ◦ LX ` PM ∼= JX ` PK ◦ F .
• For closed types we get an isomorphism F LPM ∼= JPK.
• This isomorphism allows us to define a cocommutative comonoid structure at

every classical type in a canonical way by using the cartesian structure of Set and
the axioms of symmetric monoidal adjunctions.
• The classical computational data is a comonoid homomorphism, w.r.t. this choice.
• These techniques are inspired by recent work:

• Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev. Mixed Linear and
Non-linear Recursive Types. To (probably) appear in ICFP’19.

16 / 22

A Categorical View on Causality

• Discardable operations are called causal.
• The causal structure of the finite-dimensional types is obvious.
• What is the causal structure of an infinite-dimensional type JµX .AK? Is the

construction of discarding maps closed under formation of initial algebras?
• We present a general categorical solution for any category C with a symmetric

monoidal structure, finite coproducts, a zero object, and colimits of initial
sequences of the relevant functors.

17 / 22

A Categorical View on Causality (contd.)

• Consider the slice category Cc := C/I .
• The objects are pairs (A, �A : A→ I), where �A is a discarding map.
• The morphisms are maps f : A→ B, s.t. �B ◦ f = �A, i.e. causal maps.

• Theorem: Cc is symmetric monoidal and has finite coproducts.
• Theorem: The obvious forgetful functor U : Cc → C reflects small colimits.
• Theorem: The functor U reflects initial algebras for the class of coherent

endofunctors on Cc , i.e., endofunctors whose action on the C-part of the category
is independent of the choice of discarding map.
• This allows us to present a non-standard type interpretation ‖Θ ` A‖ : Cc → Cc ,

so that each closed type ‖A‖ ∈ Ob(Cc) and JAK = U‖A‖.
• We show the computational data is necessarily causal, w.r.t. this choice of

discarding maps.

18 / 22

Relationship Between the Type Interpretations

JΘ ` PK

F×|Θ|

Set C

Set|Θ|

LΘ ` PM

F

C|Θ|

∼= ‖Θ ` A‖

L×|Θ|

C Cc

C|Θ|

JΘ ` AK

U

C|Θ|c

,

where L(A) = (A,⊥) and L(f) = f .

19 / 22

Interpretation of Terms and Configurations

• Most of the difficulty is in defining the interpretation of types and the
substructural operations.
• Terms are interpreted as Scott-continuous functions

JΠ ` 〈Γ〉 M 〈Σ〉K : JΠK→ C(JΓK, JΣK).

• Configurations are interpreted as states J(M,V ,Ω, ρ)K : I → JΣK.
• This is fairly straightforward.

20 / 22

Soundness and Adequacy

• The denotational semantics is sound:
• For any non-terminal configuration, the denotational interpretation is invariant under

program execution:

J(M,V ,Ω, ρ)K =
∑

(M,V ,Ω,ρ) (Mi ,Vi ,Ωi ,ρi)

J(Mi ,Vi ,Ωi , ρi)K

• Computational adequacy proof will be finished soon.

21 / 22

Conclusion and Future Work

• We extended a quantum programming language with inductive datatypes, copying
of classical variables and discarding of all variables.
• We described a natural model based on (infinite-dimensional) W*-algebras.
• We described the causal structure of all types (including the infinite-dimensional

ones) via a general categorical construction.
• We described the comonoid structure of all classical types using the categorical

structure of models of intuitionistic linear logic.
• We showed affine types are more appropriate compared to linear ones for QPL.
• Have to:

• Finish the adequacy proof.

22 / 22

