Quantum Programming with Inductive Datatypes:
Causality and Affine Type Theory

Romain Péchoux!, Simon Perdrix!, Mathys Rennela? and Vladimir Zamdzhiev!

LUniversité de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France
2 Leiden Inst. Advanced Computer Sciences, Universiteit Leiden, Leiden, The Netherlands

SoftQPro Meeting
6 June 2019

Universiteit
Leiden

Loria

UNIVERSITE -
@ DE LORRAINE lrzia —~

INVENTEURS DU MONDE NUMERIQUE

0/22

Introduction

Inductive datatypes are an important programming concept.
No detailed treatment of inductive datatypes for quantum programming so far.
Most type systems for quantum programming are linear. We show that affine type
systems are more appropriate.
Some of the main challenges in designing a categorical model for the language
stem from substructural limitations imposed by quantum mechanics.

® (Can (infinite-dimensional) quantum datatypes be discarded?

® How do we copy (infinite-dimensional) classical datatypes?
Our model is physically natural (von Neumann algebras) and all our constructions
are consistent with the laws of quantum mechanics.

1/22

Outline : Inductive Datatypes

Syntactically, everything is very straightforward.
Operationally, the small-step semantics can be described using finite-dimensional
superoperators together with classical control structures.

Denotationally, we have to move away from finite-dimensional quantum
computing:

® E.g. the recursive domain equation X = C @ X cannot be solved in finite-dimensions.

Naturally, we use (infinite-dimensional) W*-algebras (aka von Neumann algebras),
which were introduced by von Neumann to aid his study of quantum mechanics.

2/22

Outline : Causality and Linear vs Affine Type Systems

Linear type system : only non-linear variables may be copied or discarded.

Affine type system : only non-linear variables may be copied; all variables may be
discarded.

Syntactically, all types have an elimination rule in quantum programming.

Operationally, all computational data may be discarded by a mix of partial trace
and classical discarding.
Denotationally, we can construct discarding maps at all types (quantum and
classical) and prove the interpretation of the computational data is causal.
® This is difficult. We present a novel technique for causality analysis based on a
non-standard type interpretation. General abstract construction, also works for
non-quantum categories.
Our treatment shows the "no deletion" theorem of QM is irrelevant for quantum
programming. We work entirely within W*-algebras, so no violation of QM.

3/22

QPL - a Quantum Programming Language

As a basis for our development, we describe a quantum programming language
based on the language QPL of Selinger.

The language is equipped with a type system which guarantees no runtime errors
can occur.

QPL is not a higher-order language: it has procedures, but does not have lambda
abstractions.

We extend QPL with :

® Inductive datatypes.
® Copy operation on classical types.
® Discarding operation on all types.

4/22

Syntax

® The syntax (excerpt) of our language is presented below. The formation rules are
omitted. Notice there is no | modality.

Type Var. X, Y, Z

Term Var. x,q,b,u

Procedure Var. f.g

Types A B = X|/|qgbit| A+ B|A®B | uX.A
Classical Types P,R = X|I|P+R|P®R|uX.P
Variable contexts I, X = x3:A1L, ..., X A

Procedure cont. I = f:AL—>Bi,....f,: A, — B,

5/22

Syntax (contd.)

Terms M,N := new unit u | new gbit g | discard x | y = copy x
qi,.--,qnx=U]| M;N | skip |
b = measure q | while b do M |
x = lefty gM | x = right, gM |
case y of {left x; — M | right x, — N}
x = (x1,%) | (x1, %) = x |
y = fold x | y = unfold x |
proc f x:A—y:B{M} |y="f(x)

e A term judgement is of the form N+ (I') P (¥X), where all types are closed and all
contexts are well-formed. It states that the term is well-formed in procedure
context [1, given input variables (I') and output variables (¥).

® A program is a term P, such that -+ (-) P ('), for some (unique) I

6/22

Syntax : qubits

The type of bits is (canonically) defined to be bit .=/ + /.

Mk (') new gbit g (', g : gbit) (gbit)

I_I l_ <r, q . qbit> b — measure q <r’ b : bit> (measure)

S is a unitary of arity n
MEA(T,qu:qbit,... g, :gbit) g1,..., 9, *= S (I, q1: qbit, ..., g, : gbit)

(unitary)

7/22

Syntax : copying

P is a classical type

N-(T,x:P)y=copy x ([,x:P,y:P) (copy)

8/22

Syntax : discarding (affine vs linear)

e |f we wish to have a linear type system:

T (0 new unit o (Mo 1) ™Y T x 1) discard x () (iscd)
e |f we wish to have an affine type system:
(unit) (discard)

M= () new unit u (I, u: /) ME(T,x:A) discard x (I')

e Since all types have an elimination rule, an affine type system is obviously more
convenient.

9/22

Example Program - toss a coin until tail shows up

proc cointoss {
new gbit q;
q*=H;
b = measure q;
return b

s

b = cointoss;

while b do {
b = cointoss

® This program is written using some (obvious) syntactic sugar.

® |t terminates with probability 1, but there is no upper bound on the number of
loops it will do.

10/22

Operational Semantics

e Qperational semantics is a formal specification which describes how a program
should be executed in a mathematically precise way.
® A configuration is a tuple (M, V,Q, p), where:
® M is a well-formed term M= (I') M (X).
® V is a control value context. It formalizes the control structure. Each input variable
of M is assigned a control value, e.g. V = {x = zero,y = cons(one, nil)}.
® Qs a procedure store. It keeps track of the defined procedures by mapping
procedure variables to their procedure bodies (which are terms).
p is the (possibly not normalized) density matrix computed so far.
This data is subject to additional well-formedness conditions (omitted).

11/22

Operational Semantics (contd.)

¢ Program execution is (formally) modelled as a nondeterministic reduction relation
on configurations (M, V,Q, p) ~ (M', V', p/).

® However, the reduction relation may equivalently be seen as a probabilistic
reduction relation, because the probability of the reduction is encoded in p’ and
may be recovered from it.

® The only source of probabilistic behaviour is given by quantum measurements.

12/22

Denotational Semantics

e Types are interpreted as W*-algebras.

® \W*_algebras were introduced by von Neumann, to aid his study of QM.
® Example: The type of natural numbers is interpreted as ;. C.

® Programs are interpreted as normal completely positive subunital maps.

e \We identify the abstract categorical structure of these operator algebras which
allows us to use categorical techniques from denotational semantics.

13/22

Categorical Model

® We interpret the entire language within the category C := (Wycpsy)®P.
® The objects are (possibly infinite-dimensional) W*-algebras.
® The morphisms are normal completely-positive subunital maps.

® Our categorical model (and language) can largely be understood even if one does
not have knowledge about infinite-dimensional quantum mechanics.

® There exists an adjunction F 4 G : C — Set, which is crucial for the description of
the copy operation.

14 /22

Interpretation of Types

® Every open type X = A is interpreted as an endofunctor [X - A] : C — C.

® Every closed type A is interpreted as an object [A] € Ob(C).
® Inductive datatypes are interpreted by constructing initial algebras within C.
® The existence of these initial algebras is technically involved.

15/22

Copying of Classical Information

We do not use linear logic based approaches that rely on a I-modality.
Instead, for every classical type X - P we present a classical interpretation
(X - P) : Set — Set which we show satisfies F o (X - P) = [XF+ P]o F.
For closed types we get an isomorphism F(P) = [P].

This isomorphism allows us to define a cocommutative comonoid structure at
every classical type in a canonical way by using the cartesian structure of Set and
the axioms of symmetric monoidal adjunctions.

The classical computational data is a comonoid homomorphism, w.r.t. this choice.
These techniques are inspired by recent work:

® Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev. Mixed Linear and
Non-linear Recursive Types. To (probably) appear in ICFP'19.

16 /22

A Categorical View on Causality

Discardable operations are called causal.
The causal structure of the finite-dimensional types is obvious.

What is the causal structure of an infinite-dimensional type [uX.A]? Is the
construction of discarding maps closed under formation of initial algebras?

We present a general categorical solution for any category C with a symmetric
monoidal structure, finite coproducts, a zero object, and colimits of initial
sequences of the relevant functors.

17/22

A Categorical View on Causality (contd.)

Consider the slice category C. := C/I.
® The objects are pairs (A, 04 : A — 1), where o4 is a discarding map.
® The morphisms are maps f : A — B, s.t. ogof = ¢y, i.e. causal maps.

Theorem: C. is symmetric monoidal and has finite coproducts.
Theorem: The obvious forgetful functor U : C. — C reflects small colimits.

Theorem: The functor U reflects initial algebras for the class of coherent
endofunctors on C,, i.e., endofunctors whose action on the C-part of the category
is independent of the choice of discarding map.

This allows us to present a non-standard type interpretation ||© F Al| : C. — C,
so that each closed type ||A|| € Ob(C.) and [A] = U||A]|.

We show the computational data is necessarily causal, w.r.t. this choice of
discarding maps.

18/22

Relationship Between the Type Interpretations

e
serlel 1% el

2

©F P[)l = h[[@ FP]

Setfc

where L(A) = (A, 1)

L %1©]
—_

clel c?

[@Fﬂh M@FNM

— C,
¢ V)

L(f) = f.

19/22

Interpretation of Terms and Configurations

Most of the difficulty is in defining the interpretation of types and the
substructural operations.

Terms are interpreted as Scott-continuous functions

[N M O] - [N — C(r], [£]).

Configurations are interpreted as states [(M, V,Q,p)] : | — [X].
This is fairly straightforward.

20/22

Soundness and Adequacy

® The denotational semantics is sound:

® For any non-terminal configuration, the denotational interpretation is invariant under
program execution:

(M, V,Q,p)] = > [(Mi, Vi, Qi, p)]

(M, V., Q,p)~(M;,V; ,Qi,pi)

® Computational adequacy proof will be finished soon.

21/22

Conclusion and Future Work

We extended a quantum programming language with inductive datatypes, copying
of classical variables and discarding of all variables.

We described a natural model based on (infinite-dimensional) W*-algebras.

We described the causal structure of all types (including the infinite-dimensional
ones) via a general categorical construction.

We described the comonoid structure of all classical types using the categorical
structure of models of intuitionistic linear logic.

We showed affine types are more appropriate compared to linear ones for QPL.
Have to:
® Finish the adequacy proof.

22/22

